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Introduction and Preliminaries 
Singular Spectrum Analysis (SSA) is a relatively new powerful non-parametric technique for time series 
analysis incorporating the elements of classical time series analysis, multivariate statistics, multivariate 
geometry, dynamical systems and signal processing (Golyandina et al, 2001). 
 
SSA is designed to look for nonlinear, non–stationary, and intermittent or transient behavior in an observed 
time series, and has gained successful application in the various sciences such as meteorological, bio-

mechanical, hydrological, physical sciences, economics and finance, engineering and so on (see Khan and 
Poskitt (2010) and references therein). 
 
In spite of the successful application of SSA for different data in comparison with other models such as 
ARIMA (see for example Hassani (2007)), little of the current literature analyzes the statistical properties of 
SSA from an abstract theoretical perspective. So, to obtain a theoretical view of the forecasting with SSA, 
accuracy of forecasting with SSA is compared with ARIMA by means of statistical simulations. 
 
In what follows we give a brief explanation of the SSA method (for more details see for example Golyandina 

et al, 2001). Consider the real-valued non-zero time series 1= ( , , )T
T TY y y… of sufficient length T . Let

= 1K T L− + , where L  ( / 2L T≤ ) is some integer called the window length. The general structure of 
the SSA can be described in four basic steps: 
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Step1, Embedding: Define the trajectory matrix X  where: 
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 Note that X is a Hankel matrix, which means that all the elements along the off diagonal are equal.  

Step2, Decomposition: Define the matrix .TXX  Let 1 2 0Lλ λ λ≥ ≥ ≥ ≥… denote eigenvalues of TXX

and iU  be the normalized eigenvector corresponding to the eigenvalue iλ ( =1, , )i L… . Then singular 

value decomposition (SVD) of the trajectory matrix X can be written as: 

...= + +1 LX E E  

Where, T
i i i iU Vλ=E , /T

i i iV U λ= X  (i = 1, . . . , L). 

Step3, Separation: Partition the set of indices { }1, ,L…  into m disjoint subsets { }1, , mI I… . This 

separation leads to the following decomposition: 

1
...

mI I= + +X X X  

Where, , 1,...,
j

j

I
I

j m
∈

= =∑X EA
A

. 

Step4, Reconstruction: The last step in SSA, transforms each matrix of the grouped decomposition (step3) 

into a new series of length T. This will be doing with diagonal averaging as follow. If ijz stands for an 

element of a matrix Z, then the k-th term of the resulting series is obtained by averaging ijz over all i; j such 

that i+j = k+1. By performing the diagonal averaging of all matrix components of 
jIX  in the expansion of 

X above, we obtain another expansion:
1

...
mI I= + +X X X� � , where 

jIX�  is the diagonalized version of the 

matrix 
jIX . This is equivalent to the decomposition of the initial series 1= ( , , )T

T TY y y…  into a sum of 

m series; ( )

1

m
j

t t
j

y y
=

=∑ �  , where ( ) ( ) ( )
1= ( , , )j j j T

T TY y y� � �…  corresponds to the matrix 
jIX� . 

It must be noted that the general purpose of the SSA analysis is decomposition of original series with 
additive components that are ‘independent’ and ‘identifiable’ time series. Sometimes, however, one can also 
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be interested in particular tasks, such as ‘extraction of signal from noise,’ ‘extraction of oscillatory 
components’ and ‘smoothing’. 

 
Forecasting by SSA 
The Basic SSA recurrent forecasting algorithm discussed in Golyandina et al (2001) should be regarded as 
the main forecasting algorithm. Although, there exist several natural modifications to this algorithm that can 
give better forecasts in specific situations (see, e.g Golyandina et al (2001)), here we consider recurrent 

forecasting algorithm and call it by R-SSA. Let ( )ˆTy s denotes the R-SSA forecast at time T for lead time 

s or s steps ahead. According to the R-SSA, the following recursive formula can be used to obtain forecasts: 

ሻݏො்ሺݕ ൌ ൞

ݏ            ෤௦ݕ ൌ 1, … , ܶ

෍ ܽ௧ݕො்ሺݏ െ ሻݐ
௅ିଵ

௧ୀଵ

ݏ     ൌ ܶ ൅ 1, … , ܶ ൅  ܯ

Where, 

࣬ ൌ ሺܽ௅ିଵ, … ܽଵሻ் ൌ
1

1 െ ሺπଵ
ଶ ൅ ڮ ൅ π୰

ଶሻ ෍ π୧ ௜ܷ
׏

୰
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Such that iπ  is the last component of the vector iU and iU ∇ is the vector consisting of the first 1L −

components of iU , (i = 1, . . . , L). 

 
Comparison Criteria 
 
First of all recall that an ARIMA(p,d,q) model can be explained with an equation such as: 

( )
1 1

1 1 1
p q

i d i
i t i t

i i
L L y Lα θ ε

= =

⎛ ⎞ ⎛ ⎞
− − = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  

Where L  is the lag operator, the iα 's are the parameters of the autoregressive part of the model, the iθ 's 
are the parameters of the moving average part and the tε 's are error terms. The error terms are generally 

assumed to be independent, identically distributed variables sampled from a normal distribution with zero 
mean.  
There are several criteria to measure the accuracy of the forecasting model and all of them are based on the 
behavior of the forecast errors. As there is no one best criteria, we use root mean square errors (RMSE) 
which commonly used for the evaluation of alternative forecasting models. The MSE of some ARIMA 
models with respect to the number of step ahead, are shown in Table 1. 
 
 
 
 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS009) p.3993



Table 1: MSE of several ARIMA models with respect to the number of steps ahead 

        Steps ahead 
Model 

1 2 3 s, where s>3 

AR(1) 2σ  ( )2 2
11σ α+ ( )2 2 4

1 11σ α α+ +  ( )2 2 2( 1)
1 11 ... sσ α α −+ + +

AR(2) 2σ  ( )2 2
11σ α+ ( )( )22 2 2

1 1 21σ α α α+ + + Depends on s 

MA(1) 2σ  ( )2 2
11σ θ+  ( )2 2

11σ θ+  ( )2 2
11σ θ+  

MA(2) 2σ  ( )2 2
11σ θ+  ( )2 2 2

1 21σ θ θ+ +  ( )2 2 2
1 21σ θ θ+ +  

 

Simulation Studies  
In order to evaluate the performance of the SSA procedure in comparison with ARIMA models, data were 
simulated using a set of stationary autoregressive and moving average models of orders 1 and 2 where the 
coefficients were changed stepwise (with variance of the white noise process be one). For all data generating 

processes, N = 10000 series of length T = 100 were simulated by means of arima.sim function in statistical 

software R. The simulated data were used to forecast, applying the R-SSA algorithm presented above. Then 
standard simulation procedure was used to obtain estimates of root mean square errors (RMSE) for 
forecasting.  

 
Results 
The results are summarized in Figures 1, 2 and Tables 2 and 3. Figures 1 and 2 show RMSE of the out of 
sample forecasting by R-SSA and AR(1) (MA(1)). The parameters 1α  and 1θ  are varied from 0.1 to 0.9 

in order to generate different AR and MA processes for comparison. Moreover, 1, 2, 3 and 4 step ahead out-
of-sample forecasts are depicted in the figures (from left to right) to assess the forecasting power of the 
considered techniques in the short and long lead. As it indicated in both of figures 1 and 2, ARIMA models 
gives accurate forecasting just for the parameters less than around 0.6 in 1 step ahead, but generally, SSA has 
superiority to ARIMA models for 2, 3 and 4 steps ahead. It means that ARIMA acts well for short period 
forecasting, whereas SSA is good for both short and long forecasting. Similar results presented in Tables 2 
and 3 for AR(2) and MA(2). Of Course it is worth mention that, according to the results of Table 2 and 3, R-
SSA is better than ARIMA for all considered values of the parameters. 

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS009) p.3994



 

Fig 1: RMSE of the out of sample forecasting by R-SSA and AR(1) 

 
Fig 2: RMSE of the out of sample forecasting by R-SSA and MA(1) 

Table 2: RMSE of the out of sample forecasting by R-SSA and AR(2) for several selected AR coefficients 

Lead Method 
AR parameters: ( )1 2,α α  

(0.1,0.1) (0.1,0.2) (0.1,0.4) (0.2,0.1) (0.2,0.2) (0.2,0.4) (0.4,0.1) (0.4,0.2) (0.4,0.4)

1 
R-SSA 0.799 0.889 0.911 0.864 0.883 0.921 0.897 0.938 0.980 

AR(2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 
R-SSA 0.876 0.902 0.936 0.837 0.894 0.985 0.929 0.927 1.113 

AR(2) 1.050 1.050 1.050 1.020 1.020 1.020 1.077 1.077 1.077 

3 
R-SSA 0.860  0.831  0.964  0.851  0.904  0.945  0.941  0.957  1.093 

AR(2) 1.011 1.011 1.011 1.048 1.048 1.048 1.214 1.214 1.214 

4 
R-SSA 0.863  0.882  0.926  0.863  0.915  0.977  0.956  1.036 1.147 

AR(2) 1.011 1.011 1.011 1.051 1.051 1.051 1.273 1.273 1.273 
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Table 3: RMSE of the out of sample forecasting by R-SSA and MA(2) for several selected MA coefficients 

Lead Method 
MA parameters: ( )1 2,θ θ   

(0.1,0.1) (0.1,0.2) (0.1,0.4) (0.2,0.1) (0.2,0.2) (0.2,0.4) (0.4,0.1) (0.4,0.2) (0.4,0.4)

1 
R-SSA 0.848  0.850 0.895  0.854 0.856  0.900 0.902  0.898  0.942 

MA(2) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

2 
R-SSA 0.849  0.871  0.909 0.866  0.880  0.907  0.902  0.906  0.962 

MA(2) 1.001 1.001 1.001 1.020 1.020 1.020 1.077 1.077 1.077 

3 
R-SSA 0.872  0.870  0.915  0.871 0.878  0.916  0.901 0.918  0.966 

MA(2) 1.020 1.020 1.020 1.039 1.039 1.039 1.149 1.149 1.149 

4 
R-SSA 0.863  0.868  0.921  0.862  0.896  0.937 0.915 0.922  0.972 

MA(2) 1.020 1.020 1.020 1.039 1.039 1.039 1.149 1.149 1.149 

  
Conclusion 
Despite the successful applications of SSA compared to simpler models, little of the current literature 
analyzes the statistical properties of SSA. Therefore, to obtain a theoretical view of the forecasting with SSA, 
basic SSA forecasting algorithm is compared with ARIMA by means of a Monte Carlo study. The evaluation 
criteria used is the accuracy of out of sample point forecasts via RMSE. It has been shown in the simulations 
that forecasting by SSA can be advantageous compared to ARIMA models. 
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ABSTRACT 
Singular Spectrum Analysis (SSA) is a non-parametric method that can be applied to analyze time series of complex 

structure. The main purpose of SSA is a decomposition of the original series into a sum of series, so that each 

component in this sum can be identified as either a trend, periodic or quasi-periodic component (perhaps, amplitude 

modulated), or noise. In this paper, by means of statistical simulation, we compare the performance of the SSA and 

ARIMA models. We show that, in general, the performance of forecasting using these methods are different and depends 

on parameters of the models. 
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