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RÉSUMÉ (ABSTRACT)

Regular vine (R-vine) copulas, which are entirely constructed from bivariate copulas as building

blocks, constitute a flexible class of high dimensional dependence models. In this paper, we study

Markov switching R-vine copulas, which extend the flexibility of R-vine copulas by letting parameters

and structures vary over time. Focusing on estimation methods, we give an extensive study of a

modified Expectation Maximization (EM) algorithm and a Bayesian Gibbs sampling procedure. Using

Bayesian methods, we can also assess the uncertainty in parameter estimates which is demonstrated

in an application to exchange rate data.

Introduction

During the last years, new and increased computational capabilities have given birth to new

and sophisticated models for statistical analysis. Using the theorem of Sklar (1959) to separate the

description of marginal models from the dependence structure, one branch of multivariate statistics

focuses on the study of high dimensional copula structures. Among these, Regular vine (R-vine) copu-

las, which are entirely constructed from bivariate copulas as building blocks, constitute one particular

flexible class. Since Aas et al. (2009) introduced the R-vine copula structure in an inferential context,

it has become popular for the accurate description of fixed dependence structures. However, it lacks

the possibility to model dependence structures varying over time as it is displayed in international

financial data sets. In this paper, we attempt to fill in this gap by introducing the so called Markov

switching (MS) R-vine copula, generalizing work of Cholette et al. (2009). In particular, we study two

methods for the estimation of parameters in these MS R-vine models, a modification of the Expecta-

tion Maximization (EM) Algorithm (Hamilton, 1990) and a Bayesian Gibbs sampler. This enables us

to further assess the uncertainty in the estimation of parameters for a multivariate regime switching

model, which was not possible beforehand. The remainder of this paper is structured as follows: Sec-

tion 2 (Regular Vine Copulas) introduces R-vine copulas while Section 3 (Markov Switching Models)

recapitulates MS models. Having introduced our main object we focus on estimation methods in

Section 4 (Parameter Estimation), 5 (Expectation Maximization Algorithm) and 6 (Bayesian Gibbs

Sampling) and present an application to exchange rate data in Section 7 (Application: Exchange

Rates). Section 8 (Conclusion) concludes the paper and gives an outlook to possible areas of further

research.

Regular Vine Copulas

Building on work of Joe (1996), Bedford and Cooke (2001) introduced the hierarchical R-vine

structure in the area of multivariate statistics. Employing notation and methods from graph theory,

they define an R-vine V in d variables as a sequence of connected trees (undirected, acyclic graphs)

T1, . . . , Td−1. A five-dimensional example is displayed in Figure 1. For a more detailed introduction

to R-vine modeling we refer to Kurowicka and Cooke (2006), the computational treatment has been

considered by Dißmann (2010).
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Figure 1: An R-vine tree sequence in five dimensions with corresponding edge indices

in the notation of Czado (2010).

To satisfy the needs for statistical application, the nodes Ni and edges Ei, for 1 ≤ i ≤ d− 1, are

required to satisfy the following properties:

1. T1 has nodes N1 = 1, . . . , d.

2. For i ≥ 2, Ti has nodes Ni = Ei−1 and a corresponding set of edges.

3. If two nodes are joined by an edge in Ti+1, the corresponding edges must share a common node

in Ti.

This third technical condition is called proximity condition and it ensures that the densities of R-vine

copulas can be represented in an integral free way. To build up a statistical model on this graph

theoretic structure, we associate each edge e=̂j(e), k(e)|D(e) in the vine with a bivariate copula. This

bivariate copula will be the copula corresponding to the bivariate conditional marginal distribution of

Xj(e) and Xk(e) given XD(e). For more details on our notation, we refer to the illustration in Figure 1

and Czado (2010). The density of an R-vine copula with a set B of bivariate copulas with parameters

Θ associated to an R-vine V is denoted with c(.|V,B,Θ).

Markov Switching Models

In Markov switching models, which have been introduced into econometrics and statistical mod-

eling by Hamilton (1989) different states of the world or the economy affect the development of a

time series. For this, we assume a hidden Markov chain (St) with states 1,. . . ,n, describing the

progression of these states in time. For simplicity, we further assume that the Markov chain is ho-

mogeneous and of first order such that it can be completely characterized by its transition matrix

P (St = i|Pt−1 = j) = Pij .
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Many financial time series, like stock returns or exchange rates are influenced by external factors

like the state of the economy or monetary policies which are not directly observable and which are

thus included in the hidden state variable. Depending on these factors, different types of dependence

are present in our data. This behavior is described by the specification of a Markov switching R-vine

copula model for a time series (ut) of a random vector with uniform marginal distributions as

c(ut|St,VSt ,BSt ,ΘSt) =

n∑
i=1

1{St=k} · c(ut|Vk,Bk,Θk).

For the estimation problems considered in the upcoming section, we assume the specification of Vk and

Bk, for all 1 ≤ k ≤ n, to be given such that only the sets of parameters Θk are subject to estimation.

Parameter Estimation

Since our main interest lies in describing and estimating dependence structures, we will, for the

remainder of this paper, assume that all random vectors have uniform marginal distributions such

that they can directly be described by the means of a copula.

In order to draw inference for a MS model, we need to overcome the challenge of having unob-

served latent variables. To do so, let us consider the decomposition of the joint density of a time series

of random vectors ũT = (u1, . . . ,uT ) into conditional densities. In order to keep our notation short,

we will suppress denoting the parameters of the MS R-vine model where they are not required.

f(ũT ) = f(u1) ·
T∏
t=2

f(ut|ũt−1)

=

[
n∑

i=1

f(u1|S1 = i)P (S1 = i)

]
·

T∏
t=2

[
n∑

i=1

f(ut|St = i) · P (St = i|ũt−1)

]
.

The unconditional probabilities P (S1 = i) in this expression are known from the stationary distribution

of the Markov chain, which we assume to exist, and we can apply the filter of Hamilton (1989) to

obtain the probabilities P (St = i|ũt−1). Being able to calculate all conditional probabilities in the

equation, we can evaluate the likelihood for a given set of observations.

While this also enables us to estimate model parameters through maximization of the joint

likelihood function, a direct approach is difficult since the problem is analytically not tractable and

numerically difficult, because of the latent state variables. Furthermore, obtaining point estimates for

parameters in a high dimensional setting is of little use without being able to assess the uncertainty

in these estimates since inferred results might not be significant. Min and Czado (2010) demonstrated

that estimating the covariance matrix of ML estimators for R-vines using the numerical Hessian

often leads to non positive definite matrices and the effects are similar in the framework of MS R-

vines. Because of long computation times also bootstrap methods are not a feasible way to examine

the uncertainty of ML estimates. In the following, we discuss two possible approaches to overcome

these challenges, tackling the problem of computation time with an approximative version of the EM

Algorithm and demonstrating how to assess parameter uncertainty with a Bayesian approach.

Expectation Maximization Algorithm

The EM Algorithm, which has been proposed by Hamilton (1990) to overcome the problem of

having unobserved state variables, constitutes an iterative procedure consisting of the following steps:

• Form the conditional expectation of unobserved variables and

• maximize the likelihood, replacing the latent state variables with their conditional expectation.
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While this procedure has significant advantages in cases where it makes the maximization step analyt-

ically tractable, we would, in our case, still need to maximize the likelihood of a multivariate copula

which is numerically difficult in high dimensions. To circumvent this problem, we can exchange the

joint maximization with a stepwise maximization for each copula on the vine as it is similarly applied

for model selection by Dißmann (2010).

We call this the stepwise EM Algorithm. Being a close approximation to the proper EM Al-

gorithm, it leads to comparable results for most applications. While there are theoretical results

considering the convergence of the EM Algorithm, c.f. Wu (1983), we certainly loose these properties

with our approximation. All limit and convergence theorems however do rely on proper maximization

at each step of the algorithm. This is almost impossible to guarantee in our case where we are faced

with high dimensional numerical maximization problems. Therefore, also an implementation of the

”proper” EM Algorithm has to be considered an approximation, which further justifies the use of our

stepwise procedure.

Bayesian Gibbs Sampling

For a more accurate study and in order to assess the uncertainty in parameter estimation, we

follow a Bayesian approach. To develop a Bayesian algorithm, two problems have to be adressed. We

need to deal with the underlying Markov structure, and we need to estimate the parameters in an

R-vine copula specification.

Since the conditional margins are unknown, the estimation of R-vine copula parameters is done

in an MCMC framework utilizing the Metropolis-Hastings algorithm. Following Min and Czado (2010),

we assume non informative priors for all copula parameters in our model, restricting the support to a

finite interval in cases where the parameter range is not compact.

To deal with the latent variables, we follow the approach by Kim and Nelson (1998), such that

the Gibbs sampler for the full model circles through the following steps:

1. Sample (S̃T |ũT ,Θ1, . . . ,Θn, P )

2. Sample (P |S̃T , ũT ,Θ1, . . . ,Θn) = (P |S̃T )

3. Sample (Θi|u{t∈{1,...T}|St=i}) for i = 1, . . . , n.

Application: Exchange Rates

For a demonstration of our procedures, we consider a data set consisting of exchange rates

against the US dollar for nine different currencies, namely Euro, British pound, Canadian dollar,

Australian dollar, Brazilian real, Japanese yen, Chinese yuan, Swiss franc and Indian rupee. This

data set has also been studied by Czado et al. (2010) and we refer to their paper for more details on

the data set which has 1007 daily observations.

We assume two regimes to be present in the data set for which we do first need to identify

suitable R-vine structures V and sets of copulas B before we can turn to parameter estimation. To do

so, we conduct a rolling window analysis to identify a regime which describes dependencies in times

of crisis and we choose a second regime describing the average dependence over the whole data set.

For this we use the structure selection methods of Dißmann (2010) and we refer to his work for more

details on the employed methods. Considering the sets of copulas B, we select Gaussian copulas to

correspond to the conditional distributions of the first and second tree of the R-vine in the ”normal”

regime and of the second tree in the ”crisis” regime. Rotated Gumbel copulas are assigned to the first

tree in the crisis regime in order to account for possible tail dependencies.
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Given these structures we iterate the approximative EM Algorithm until convergence and use the

obtained point estimates as starting values for the Bayesian Gibbs sampling procedure. The resulting

estimates for the smoothed probabilities of being in the ”crisis” regime as obtained with the Gibbs

sampling approach are plotted in Figure 2. Figure 3 shows histogram plots of the posterior distribution

of the copula parameters in the ”crisis” regime using a sample size of 6000 after appropriate thinning.

Figure 2: Smoothed probability that the latent state variable indicate the presence of the

crisis regime plotted against the time. The annotations indicate important events

during the financial crisis.

As Figure 2 demonstrates, times where our model indicates a high probability of the ”crisis”

structure to be present correspond to important events during the financial crisis. This confirms

our conjecture that a dependence structure which is different from the long term average is present

during these times. The distribution estimates in Figure 3 show that the estimated confidence bands

are sufficiently narrow to draw conclusions from different posterior mode or posterior mean estimates.

For the parameter θ6,5 many samples are close to the value 1 for which the Clayton copula corresponds

to the independence copula, yielding the hypothesis that the exchange rates of the Swiss franc and

the Chinese yuan to US dollar are independent during times of crisis.

Figure 3: Histogram plots of our samples from the posterior distributions of the

parameters of the ”crisis” vine structure.
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Conclusion

The model presented in this paper allows for a efficient parameter estimation for time-varying

copula structures and to assess the uncertainty in such estimates. Building the model on truncated

R-vines allows for highly flexible structures while keeping a low number of parameters, minimizing the

risk of overestimating the model. Applying our procedures to exchange rate data, we find that the

dependence structures where similar during important events of the financial crisis, which supports

the use of MS models to account for behavioral changes during such times.
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