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1 A motivating example

In longitudinal studies, a response variable measured over time, may vary across subgroups. A typical
example is illustrated by the first three panels of Figure 1; these display simulated growth data (based
on the model in Durban et al. 2005) of 197 children who suffer from acute lymphoblastic leukaemia,
and have received three different treatments. In some cases, a parametric mixed model is sufficient to
summarize this type of data. However in Figure 1, a parametric approach does not seem appropriate,
so smoothing is incorporated into the modelling process in order to extract the correct patterns from
the data. In this setting, the mixed model representation of truncated polynomials is widely used,
with a well known covariance structure for the random effects. In this paper, we outline this approach,
demonstrate its limitations, and describe a more appropriate approach via penalty arguments.

2 The standard model

We consider n subjects classified into m groups and we denote by g(i) the group to which subject
i belongs, by tij the time of the jth observation on subject i, and by yij the value of the response
variable on subject i at time tij . We suppose that the data are entered in group order and denote by
yi and ti the response and time vectors for subject i. Our aim is to extract both the group and subject
effects from these data in a smooth fashion. A convenient model for this purpose can be written as

yij = Sg(i)(tij) + S̆i(tij) + εij , εij ∼ N (0, σ2),(1)

where Sg(i)(·) quantifies the group effect to which subject i belongs, and S̆i(·) measures the departure
of the ith subject from its group effect. A common approach consists of expressing these functions in
terms of truncated lines, ie,

Sg(i)(t) = ag(i),0 + ag(i),1t +
q∑

k=1

ug(i),k(t− τk)+, S̆i(t) = ăi0 + ăi1t +
q̆∑

l=1

ŭil(t− τ̆l)+,(2)

where x+ = max{x, 0}, and τ = {τ1, ..., τq} and τ̆ = {τ̆1, ..., τ̆q̆} are sets of internal knots at the group
and subject levels respectively. If ag(i) = (ag(i),0, ag(i),1)′, ug(i) = (ug(i),1, ..., ug(i),q)′, ăi = (ăi0, ăi1)′

and ŭi = (ŭi1, ..., ŭiq̆)′, then model (1) can be expressed in matrix form as

yi = Sg(i)(ti) + S̆i(ti) + εi, i = 1, . . . , n,(3)

where

Sg(i)(ti) = Xiag(i) + Tiug(i), S̆i(ti) = X̆iăi + T̆iŭi,(4)
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and εi is the error vector for subject i; here Xi = X̆i = [1 : ti], and Ti and T̆i are made up
of truncated lines for subject i at the group and subject level respectively. Two issues need to be
addressed: smoothness and identifiability. A standard approach uses a rich set of knots and then deals
simultaneously with smoothness and identifiability by applying the following normal constraints:

ug(i) ∼ N
(
0, σ2

P Iq

)
, ăi ∼ N (0,Σ) , ŭi ∼ N

(
0, σ2

SIq̆

)
,(5)

where Σ is a 2×2 symmetric positive definite matrix, and Iq and Iq̆ indicate identity matrices of sizes
q and q̆ respectively; see Coull et al. (2001), Ruppert et al. (2003) and Durban et al. (2005). We refer
to (5) as the standard covariance assumption and to the model defined by (4) and (5) as the standard
model. One advantage of this model is that it can be fitted to data with the lme function in the R

package nlme, as described by Durban et al. (2005). However, the investigation of this approach in
terms of its ability to separate appropriately the two inter-connected effects (ie, the group and subject
effects) has received little attention. In a recent paper, Djeundje & Currie (2010) illustrated some
of its problems. In this section we describe these problems and explain why the approach will fail,
especially as far as the identifiability of the group and subject effects is concerned.

First, we consider the growth data introduced earlier; this data set contains 197 children and the
number of observations per child varies from 1 to 21; for this reason, we follow Durban et al. (2005)
and use q = 40 and q̆ = 10 knots at the treatment and subject levels. To illustrate our point, we
consider two scenarios:

Scenario 1: We use the representation (4); we refer to this representation as the forward basis.

Scenario 2: We consider the representation (4), but replace the basis functions (t − τk)+ and
(t− τ̆l)+ by (τk − t)+ and (τ̆l − t)+ respectively; we refer to this representation as the backward
basis.

The fitted children (subject) means from both these scenarios (obtained by adding the fitted children
effects to their group effects) are nearly identical, and sit appropriately on the data. It is easy to
suppose that this goodness of fit at the global level implies that the fitted group and subject effects
are appropriately extracted. However, the lower right panel in Figure 1 illustrates a fitted group
effect under these two scenarios; we see that this fitted group effect together with the corresponding
confidence bands depends on whether the forward or backward basis is used.

Second, we perform a simulation exercise to clarify this point further. For this purpose we
consider n = 60 subjects divided into m = 3 groups of sizes n1 = 20, n2 = 15 and n3 = 25. We
consider the special case of balanced data with M = 25 observations made on each subject at equally-
spaced time points on [0, 1]; we denote this common time vector by t. We generate the response data
for a single simulation as follows:

• We define the true group effects by the following quadratic functions: Sk(t) = (t− k
4 )2, k = 1, 2, 3.

• We define the true subject curves by S̆i(t) = Ai × sin(φit + ϕi), where Ai ∼ N (0, σ2
A) and

φi, ϕi ∼ U [0, θ], i = 1, ..., n. The results presented in this paper use (σ2
A, θ) = (0.252, 2π), but we

note that large values of θ increase the flexibility of these subject curves.

• Finally, we simulate response data according to model (1), with σ2 set to 0.12. An illustration
of such simulated data for group 1 is shown in the upper left panel of Figure 2.

We want to evaluate the standard model in terms of its ability to recover the true underlying
group curves as well as the behaviour of the related confidence bands. The upper right panel of
Figure 2 displays the fitted group effect corresponding to the data in the left panel. Specifically, this
graphic shows for the effect of group 1: (i) the true effect (dashed black line), (ii) the fitted effect
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using the forward basis (red), (iii) the fitted effect using the backward basis (green), and (iv) the fitted
effect using the penalty approach (blue, and described in the next section). The bias in the fitted effect
and the associated confidence bands arising from the standard model (with either the forward or the
backward basis) is worrying.

We will now evaluate this approach asymptotically over a set of simulations as follows:

• We perform and store N = 100 simulations.

• For each simulation r, 1 ≤ r ≤ N , we

− fit the standard model and estimate the group effect Sk(t) as Ŝ
(r)
k (t), k = 1, 2, 3,

− compute the standard deviation SD
(r)
k (t) about Ŝ

(r)
k (t), k = 1, 2, 3,

− compute the average mean square errors as MSE(r) =
∑m

k=1
‖Ŝ(r)

k
(t)−Sk(t)‖2

mM , m = 3, M = 25.

• Finally, we compute the mean standard deviation as SDk =
∑N

r=1
SD

(r)
k

(t)

N , k = 1, 2, 3.

In the lower left panel of Figure 2, the red and green dots show the MSE(r) obtained under the
forward and backward bases respectively, while the blue dots refer to the penalty approach (presented
in the next section). The lower right panel shows the mean standard deviation SDk with the same
colour specification (each group is denoted by a different line style). We note that there is a close
connection between the upper and lower right panels: the upper panel shows the widening fan effect
of the confidence bands (for group one) arising from fitting the standard model (with the forward or
backward basis) to a single simulated sample. This widening suggests that the standard deviation will
increase or decrease (depending on the basis orientation). The lower panel does indeed confirm this
widening (increasing or decreasing) under the standard model.

We have conducted an extensive investigation into the effect of different values of the parameters
(σ2

A, θ, σ2). One important finding was that the discrepancy between the fitted effects and the true
underlying effects with the standard model increases as the underlying subject curves become more
flexible, ie, as θ increases; with small θ the subject curves are close to linear and the bias is relatively
small.

The reason for the bias with the standard model is the covariance specification (5). In (5), the
parameters σ2

P and σ2
S determine the smoothness of the group and subject effects respectively; the

intention is that their identification be controlled by the covariance component Σ. However, Σ can
only separate the linear components of these two effects. There are two cases. First, if the subject
effects are not too flexible, (ie, close to linear) then the variance parameter σ2

S will tend to be small
and the standard model can successfully recover the two effects. Second, if the subject effects are
sufficiently non-linear (as in the growth data example or in the simulated data in the upper left panel
of Figure 2), then the non-linear components Tiug(i) and T̆iŭi in (4) become substantial; there is
nothing in the standard covariance (5) that enables the appropriate separation of the two effects.
In the next section, we derive a more appropriate covariance structure via a penalty argument; this
provides a solution to the problem.

3 Penalty approach

From now on, we express the group and subject effects in terms of B-splines, and we smooth using
the P -spline system of Eilers & Marx (1996). A more general approach which includes both B-splines
and/or truncated polynomials is described in Djeundje & Currie (2010). In terms of B-spline bases,
the components of model (1) can be expressed in matrix form as

Sg(i)(ti) = Biαg(i), S̆i(ti) = B̆iᾰi,(6)
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where Bi and B̆i are B-spline bases for subject i at the group and subject levels, and αg(i) and
ᾰi are regression coefficients. Following Eilers & Marx (1996), we achieve smoothness by penalizing
the roughness of the B-spline coefficients at both levels, and for identifiability, we follow Djeundje
& Currie (2010) and shrink the subjects’ B-spline coefficients towards 0. This yields the following
constraints:

‖∆αg(i)‖2 < ρ, ‖∆̆ᾰi‖2 < ρ̆1, ‖ᾰi‖2 < ρ̆2,(7)

for some well chosen constants (ρ, ρ̆1, ρ̆2); here and below, ∆ and ∆̆ represent second order difference
operators of appropriate size. Using Lagrange arguments, the penalized residual sum of squares, PRSS,
of (1) & (6) under the constraints (7) can be expressed as

PRSS =
n∑

i=1

‖yi −Biαg(i) − B̆iᾰi‖2 +
m∑

k=1

α′kPkαk +
n∑

i=1

ᾰ′iP̆iᾰi,(8)

where

Pk = λ∆′∆, P̆i = λ̆∆̆′∆̆ + δ̆Ic̆(9)

represent the penalty matrices at the group and subject levels respectively, and c̆ is the number of
columns in B̆i. In these expressions, λ and λ̆ are the smoothing parameters at the group and subject
levels, while δ̆ is the shrinkage/identifiability parameter; these three parameters play (inversely) the
equivalent role as ρ, ρ̆1 and ρ̆2 in (7). We can now fit the model in the least squares sense by mini-
mizing the PRSS with respect to the regression coefficients, and use criteria like AIC, BIC or GCV to
estimate the smoothing/identifiability parameters, as described in Djeundje & Currie (2010). Nowa-
days, smooth models are often expressed as mixed models, since estimates of the variance/smoothing
parameters obtained from the mixed model representation and restricted likelihood tend to behave
well (Reiss and Ogdon, 2009). Further, our simulation study displays a mixed model structure. Using
the singular value decomposition of the penalty component ∆′∆, we re-parameterize the PRSS as

PRSS =
n∑

i=1

‖yi −Xiβg(i) −Zibg(i) − B̆iᾰi‖2 + λ
m∑

k=1

b′kbk +
n∑

i=1

ᾰiP̆iᾰi,(10)

with matrices Xi and Zi defined as

Xi = [1 : ti], Zi = BiUiΛ
−1/2
i ;(11)

here Λi is the diagonal matrix formed by the positive eigenvalues of ∆′∆, and Ui is the matrix whose
columns are the corresponding eigenvectors.

Setting y = vec(y1, ...,yn), β = vec(β1, ...,βm) and u = vec(b1, ..., bm, ᾰ1, ..., ᾰn), we can show
that the minimization of the PRSS in (10) with respect to the regression coefficients corresponds to
the maximization of the log-likelihood of (y, u) arising from the mixed model representation

y|u ∼ N (Xβ + Zu, σ2I), u ∼ N (0, σ2P−1),(12)

where

P = blockdiag(λIc−2, ..., λIc−2︸ ︷︷ ︸
m times

, P̆1, ..., P̆n)(13)

is the full penalty matrix, β is the fixed effect, u is the random effect, and X and Z are appropriate
regression matrices; here c is the number of columns in Bi. We note that in the balanced case (as in
our simulation) we can write Xi = Xg, Zi = Zg and B̆i = B̆, i = 1, . . . , n, and then in (12) we have
X = blockdiag(1n1 ⊗Xg, . . . ,1nm ⊗Xg) and Z = [blockdiag(1n1 ⊗Zg, . . . ,1nm ⊗Zg) : In ⊗ B̆].
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An illustration of the effectiveness of the penalty approach fitted via the mixed model represen-
tation is shown in Figure 2: (a) the top right panel shows the fitted group effect (blue lines) (b) the
lower left panel compares the MSE(r) of the penalty approach (blue dots) with the MSE(r) of the
standard approach (c) the lower right panel compares the mean standard deviation for the three
groups for the two approaches. These graphics demonstrate that the penalty approach is successful
in removing both the bias in the estimates and the fanning effect in the confidence intervals seen with
the standard model (at least in the cases discussed here).

4 Conclusion

In this short paper we have emphasized the importance of dealing appropriately with both smoothness
and identifiability in the analysis of grouped longitudinal data. We have described a penalty approach
which allows us to address both these issues directly. The penalty approach yields a model which
can be reformulated as a mixed model and we have demonstrated that the estimates of the group
effects from this model are free of bias and of fanning of the associated confidence intervals. A fuller
description of this work is in preparation together with software to implement our approach.
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Figure 1: Graphics related to the height measurements of 197 children suffering from acute lym-
phoblastic leukaemia, and receiving three different treatments. The first three panels show the data.
The last panel shows the fitted treatment effect (for group one) from the standard approach with the
forward basis (red) and the backward basis (green).
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Figure 2: Some graphics related to the simulated data. Top left: a sample of the simulated data. Top
right: the fitted group effect for the data in the top left panel. Lower left: comparison of the mean
square error. Lower right: Comparison of the standard deviation; each group is denoted by a different
line style.
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ABSTRACT

The fitting of subject-specific curves (also known as factor-by-curve interactions) is important in
the analysis of longitudinal data. One approach is to use a mixed model with the curves described in
terms of truncated lines and the randomness expressed in terms of normal distributions. This approach
gives simple fitting with standard mixed model software. We show that these normal assumptions
can lead to biased estimates of and inappropriate confidence intervals for the population effects. We
describe an alternative approach which uses a penalty argument to derive an appropriate covariance
structure for a mixed model for such data. The effectiveness of our methods is demonstrated with the
analysis of some growth curve data and a simulation study.
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