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Abstract

The main objective of Statistics of Extremes is the prediction of rare events, and thus the need
for an adequate estimation of parameters related to natural disasters. The primary parameter is the
extreme value index (EV I). One of the most recent and general approaches is the semi-parametric
one, where it is merely assumed that the model underlying the random sample is in the domain of
attraction of a (unified) extreme value distribution. The EVI estimation is then based on the largest
k order statistics in the sample or on the excesses over a high level u. The question that has been
often addressed in the practical applications of Extreme Value Theory is the choice of either k or u.
A great variety of semi-parametric EVI-estimators have the same type of problems, consistency for
intermediate ranks, high variance for small values of k, and high asymptotic bias for large values of k.
In this paper we shall concentrate on heavy tails, i.e., a positive EVI. The most common methods of
adaptive choice of the threshold k, among which we mention the bootstrap methods, are based on the
minimization of some kind of mean squared error estimator. Here we advance with a methodology
based on bias properties for the selection of the optimal sample fraction. The methodology depends
on a tuning parameter, and we provide a choice for such a tuning parameter. In order to achieve
our objectives we derive the asymptotic behavior of an adequate linear combination of the scaled
log-spacings, suggest the use of two alternative auxiliary statistics, and draw some overall comments.

1 Introduction

Let X1, X2, . . . , Xn be independent, identically distributed (i.i.d.) random variables (r.v.’s) from an
underlying population with unknown distribution function (d.f.) F (·), and letX1:n ≤ · · · ≤ Xn:n denote
the associated sample of ascending order statistics (o.s.). Then, if there exist attraction coefficients
{an > 0}n≥1 and {bn}n≥1, and a non-degenerate d.f. G(·) such that the distribution of the maximum
Xn:n, linearly normalized, converges to G(·), the d.f. G(·) is of the type of an Extreme Value (EV )
d.f.,

(1) Gγ(x) ≡ EVγ(x) := exp
(
− (1 + γx)−1/γ

)
, 1 + γx > 0, γ ∈ R.

We then say that F belongs to the domain of attraction of EVγ , and write F ∈ DM(EVγ). The
main objective of Statistics of Extremes is the prediction of rare events, and thus the need for an
adequate estimation of parameters related to natural “disasters”. The primary parameter is however
the extreme value index (EVI), the shape parameter γ in (1). One of the most recent and general
approaches is the semi-parametric one, where it is merely assumed that F ∈ DM(EVγ), the estimation
of γ being then based on the largest k o.s. in the sample or on the excesses over a high level u. The
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question that has been often addressed in the practical applications of Extreme Value Theory (EVT)
is the choice of either k or u.

A great variety of semi-parametric EVI-estimators, γ̂n,k ≡ γ̂n(k), have the same type of problems
— consistency for intermediate ranks, i.e., we need to have k = kn → ∞, and kn/n → 0, as n →∞,
high variance for small values of k, and high bias for large values of k. In this paper we shall concentrate
on Hill’s estimator (Hill, 1975),

(2) γ̂Hn,k ≡ γ̂Hn (k) :=
1
k

k∑
i=1

{
ln
Xn−i+1:n

Xn−k:n

}
=

1
k

k∑
i=1

Ui, Ui := i

{
ln
Xn−i+1:n

Xn−i:n

}
, 1 ≤ i ≤ k.

Let us put U(t) := F←(1− 1/t) := {inf x : F (x) > 1− 1/t}, t > 1. We shall assume that there
exists a function A(t) of constant sign and going to 0 as t→∞, such that

(3) lim
t→∞

U(tx)/U(t)− xγ

A(t)
= xγ

xρ − 1
ρ

,

for every x > 0, where ρ (≤ 0) is a second order parameter. Then we have, asymptotically, the
following distributional representation for the Hill estimator in (2),

(4) γ̂Hn,k
d= γ +

γPk√
k

+
1

1− ρ
A(n/k) + op(1/

√
k) + op(A(n/k)),

where Pk is a standard Normal r.v. (de Haan and Peng, 1998). The limit in (3) must be of the
stated form, and |A(t)| ∈ RVρ (from Theorem 1.9 of Geluk and de Haan, 1987), where RVa stands for
the class of regularly varying functions at infinity with an index of regular variation a, i.e., positive
measurable functions g such that g(tx)/g(t)→ xa, as t→∞ and for all x > 0 (for details on regular
variation, see Bingham et al., 1987). It thus follows that if k is such that

√
kA(n/k) → λ, finite, as

n→∞, then
√
k
(
γHn,k − γ

) d−→ N
(
λ/(1− ρ), γ2

)
) as n→∞, i.e. we may have a non-null asymptotic

bias. Moreover, if
√
kA(n/k)→∞,

(
γ̂Hn,k − γ

)
/A(n/k)

p→ 1/(1− ρ). So we see that whether the limit
of
√
kA(n/k) is either finite or infinite, we can always specify the rate at which γ̂Hn,k converges to γ.

A possible substitute for the mean square error (MSE) is (cf. equation (4))

AMSE
(
γ̂Hn,k

)
:= E

(
γ Pk√
k

+
1

1− ρ
A(n/k)

)2

=
γ2

k
+
A2(n/k)
(1− ρ)2

,

depending on n and k. It is then possible to see that if AMSE
(
γ̂Hn,k

)
is minimal at k0 = k0(n), then√

k0 A(n/k0)→ γ(1− ρ)/
√
−2ρ, as n→∞.

Since we often need to impose the extra condition that the function A(t) in (3) can be chosen
as a power of t, i.e.,

(5) A(t) = C tρ, with C 6= 0 and ρ < 0,

we shall assume throughout the paper that we are working in Hall-Welsh class of d.f.’s (Hall, 1982;
Hall and Welsh, 1985), with a right tail of the type

1− F (x) = αx−1/γ
(

1 + βxρ/γ + o(xρ/γ)
)
, as x→∞, α > 0, γ > 0, β 6= 0, ρ < 0,

which is equivalent to (3) jointly with (5) and with C = γρβαρ.

The most common methods of adaptive choice of the threshold k are based on the minimization
of some kind of MSE-estimator. We mention the bootstrap methodology for the selection of k0(n)
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(Hall, 1990; Draisma et al., 1999; Danielsson et al., 2001; Gomes and Oliveira, 2001). The adaptive
choice of the threshold in Hall and Welsh (1985), as well as the methodology developed in Beirlant et
al. (1996a, 1996b) have also the objective of minimization of a MSE-estimator. Drees and Kaufmann
(1998) proposal, as well as the methodology in Guillou and Hall (2001), for the selection of the
optimal sample fraction are based on bias properties. In this note, we are particularly interested in
the approach followed in the paper by Guillou and Hall. In Section 2, we describe the method, and
provide a choice for the tuning parameter under play. Section 3 is devoted to the asymptotic behavior
of a linear combination of the scaled log-spacings. Finally, in Section 4, we suggest the use of two
alternative auxiliary statistics, and draw some overall comments.

2 An adaptive choice of the threshold based on bias behaviour

Guillou and Hall (2001) suggested an ingenious approach for choosing the threshold when fitting the
Hill estimator of a tail exponent to extreme value data. Here, we merely propose a more objective
choice of the nuisance parameter, ccrit, there considered. The argument is the following: for the
Hill estimator we have the validity of the distributional representation (4), and the asymptotic mean
squared error of

√
k γHn,k is equal to γ2(1 + µ2

k) where

µk =
√
k A(n/k)/(γ(1− ρ)).

Then, the value k0 of k that is optimal in the sense of minimizing the asymptotic MSE of γHn,k may
be taken as a solution of

µ2
k0 = 1/

√
−2ρ.

Similarly to what happens in the bootstrap methodology of Draisma et al. (1999), Danielsson et al.
(2001) and Gomes and Oliveira (2001), the idea underlying Guillou and Hall’s paper is to replace the
r.v.
√
k
{
γHn,k − γ

}
/γ by a statistic which also converges towards 0 and has similar bias properties.

Such a statistic is merely a linear combination of the log-spacings Ui, 1 ≤ i ≤ k, in (2), with a null
mean value. More precisely, the main role in this diagnostic technique is played by the statistics

Tk ≡ Tn(k) :=

√
3
k3

k∑
i=1

wi Ui/
k∑
i=1

Ui,

with wi = sgn(k − 2i+ 1)|k − 2i+ 1|, 1 ≤ i ≤ k, together with a moving average of its squares, which
dampens stochastic fluctuations of Tn(k), the set of statistics

Qk ≡ Qn(k) :=

 1
2[k/2] + 1

k+[k/2]∑
i=k−[k/2]

T 2
i


1/2

.

3 The asymptotic behaviour of a linear combination of the scaled

log-spacings

Let us consider the statistic
k∑
i=1

wi Ui, wi = sgn(k − 2i+ 1)|k − 2i+ 1|, 1 ≤ i ≤ k.

Since
∑k

i=1wi = 0, we obviously have E
(∑k

i=1wi Ui
)

= 0. But from the fact that, under the second
order framework in (3), the Ui’s are approximately exponential and given by

Ui = γ Ei + i A(n/k) (k/i))ρ
(
eρEi/i − 1

)
(1 + op(1))/ρ,
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where {Ei}i≥1 is a sequence of i.i.d. exponential r.v.’s, we may have a non-null dominant component

of asymptotic bias, related to the behaviour of the term A(n/k)
∑k

i=1

(
i
k

)−ρ
wi Ei. For the choice

wi = sgn(k− 2i+ 1)|k− 2i+ 1|, 1 ≤ i ≤ k, and with the usual notation an ∼ bn whenever an/bn → 1,
as n→∞, we have

k∑
i=1

( i
k

)−ρ
wi ∼

ρ

(1− ρ)(2− ρ)
k2 and

k∑
i=1

w2
i ∼

k3

3
.

Hence, we can write, for intermediate k,

Tn(k) d= Pk +
√

3ρ
γ(1− ρ)(2− ρ)

√
k A(n/k) (1 + op(1)) = Pk +

√
3 ρ µk
2− ρ

(1 + op(1))

where Pk is the standard normal r.v. in (4). If we recall that the optimal choice of k should be such
that µ

k0
−→
n→∞

1/
√
−2ρ, a sensible adaptive choice of k by means of Tn(k) should be

kT0 := inf {k : |Tn(j)| ≥ cT , ∀j ≥ k} , cT =
−
√

3 ρ
(2− ρ)

√
−2ρ

.

We have asymptotically,

E
(
T 2
n(k)

)
= 1 +

3ρ2µ2
k

(2− ρ)2
and E

(
Qn(k)

)
= 1 +

3ρ2 (32(1−ρ) − 1)
22(2−ρ)(1− ρ)(2− ρ)2

µ2
k.

The adaptive choice of k0 through the help of the statistic Qn(k) should be based on the critical value

cQ = 1 +
3ρ2 (32(1−ρ) − 1)

22(2−ρ)(1− ρ)(2− ρ)2
√
−2ρ

,

and the choice
kQ0 := inf

{
k : |Qn(j)| ≥ cQ , ∀j ≥ k

}
.

In Figure 1 we picture both the values of cT and cQ as a function of |ρ|. Whereas cT converges
towards 0 both as ρ → 0 and ρ → −∞, attaining a maximum value, equal to 0.43 for ρ = −2, cQ

converges towards 1 as ρ → 0, diverging to +∞ as ρ → −∞. The critical value cQ depends strongly
on the value of ρ, and it thus seems not to be advisable in practice, where all values of ρ may appear,
to consider a fixed cQ , equal for instance to ccrit=1.25, as suggested by Guillou and Hall (2001). It
seems we should choose the critical level as a function of an adequate estimate of the second order
parameter ρ. Notice however that for |ρ| ≤ 2 we have not a great variation in cQ , as a function of ρ.
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Figure 1: Values of c
T

and c
Q

as a function of |ρ|.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS014) p.4164



4 The use of alternative auxiliary statistics

We here suggest the use of two alternative auxiliary statistics: either the statistic

T ∗n(k) = T 2
n(k) or Q∗n(k) :=

{
1
k

k∑
i=1

T 2
n(i)

}1/2

.

The main reason for these choices is that we have asymptotically

E
(
T ∗n(k)

)
= 1 +

3ρ2

(2− ρ)2
µ2
k and E

(
Q∗n(k)

)
= 1 +

3ρ2

4(1− ρ)(2− ρ)2
µ2
k,

and the choices

kT
∗

0 := inf {k : |T ∗n(j)| ≥ cT ∗ , ∀j ≥ k} and kQ
∗

0 := inf {k : |Q∗n(j)| ≥ cQ∗ , ∀j ≥ k} ,

where

c
T∗ := 1 +

3ρ2

√
−2ρ (2− ρ)2

and c
Q∗ := 1 +

3ρ2

4
√
−2ρ (1− ρ)(2− ρ)2

,

respectively. From a theoretical point of view, the main advantage of these choices seems to be the
fact that both c

T∗ and c
Q∗ converge towards 1 either as ρ → 0 or as ρ → −∞. More than that: c

T∗

attains a maximum value, equal to 1.487 for ρ = −6 and c
Q∗ attains a maximum equal to 1.032 for

ρ = −1.59, being thus “almost invariant” with ρ. In Figure 2 we picture both the values of c
T∗ and

c
Q∗ as a function of |ρ|.
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Figure 2: Values of c
T∗ and c

Q∗ as a function of |ρ|.

Figure 2, as well as a small-scale Monte-Carlo simulation, show that it seems preferable to work
with the statistic Q∗n(k) rather than with the other statistics — a smaller range means better final
results, as expected, and possibly with a ccrit independent on ρ, and equal to 1. Notice also that
whereas Qn(k) is defined only for k+[k/2] ≤ n−1, Q∗n(k) can be defined for all 1 ≤ k ≤ n−1, another
point in favour of Q∗n(k).
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RÉSUMÉ

L’objectif principal de la Statistique des Valeurs Extrêmes est la prédiction d’ événements rares;
il en résulte le besoin d’estimation appropriée des paramètres connexes aux désastres naturels. Le
paramètre principal est l’index de valeur extrême (Extreme Value Index, EVI). La récente méthodologie
demi-paramétrique, où l’on présume simplement que le modèle sous-jacent à l’échantillon aléatoire
est dans le domaine d’attraction de la distribution (unifiée) de valeurs extrêmes, est très générale.
L’estimation de l’EVI a donc comme point de départ les k statistiques d’ordre les plus grandes dans
l’échantillon, ou les excès d’un niveau élevé u. Dans l’application pratique de la Théorie des Valeurs
Extrêmes, une des questions envisagées très souvent est le choix soit de k soit de u. Une grande variété
d’estimateurs demi-paramétriques de l’EVI, présentent le même type de problèmes, notamment consis-
tance seulement pour les rangs intermédiaires, variance élevée en cas de petites valeurs de k, et biais
asymptotique élevé en cas de grandes valeurs de k. Dans cette communication nous envisageons le cas
de queues lourdes, c’est à dire EVI positif. Les méthodes les plus usuelles de choix adaptatif du seuil
k, parmi lesquelles nous mentionnons les méthodes bootstrap, sont basées dans la minimisation d’un
estimateur quelconque de l’erreur carrée moyenne. Nous proposons une méthode pour la sélection
de la fraction d’échantillon optimale qui a pour fondement des propriétés du biais. Cette méthode
dépend d’un paramètre d’ajustement, et nous proposons un choix pour ce paramètre d’ajustement.
Pour atteindre nos objectifs, nous dérivons le comportement asymptotique d’une combinaison linéaire
appropriée des log-espacements, nous suggérons le recours à deux statistiques supplétives alternatives,
et nous présentons quelques réflexions générales.
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