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Introduction

‘Partial Least Squares’ Path Modeling (PLS-PM by Wold, 1975; Wold, 1982; Tenenhaus et

al., 2005; Esposito Vinzi et al., 2010 for an overview with recent developments) is so far the most

popular component-based alternative (Tenenhaus, 2008) to the classical covariance-based approach

to Structural Equation Models (SEMs). PLS-PM has been more recently revisited also as a general

framework for multiple table analysis (Tenenhaus & Hanafi, 2010; Tenenhaus & Tenenhaus, 2011).

Here we present a new approach to estimating outer weights in PLS Path Modeling that is

fully based on the PLS principle. Indeed, we propose two new modes for estimating the measurement

model: PLScore Mode with standardized scores and oriented to maximizing correlations between

latent variables (LVs); PLScow Mode with constrained weights and oriented to maximizing covariances

between LVs. Both modes involve integrating a PLS Regression as an estimation technique within

the outer estimation phase of PLS-PM. However, in PLScore Mode a PLS Regression is run under the

classical PLS-PM constraints of unitary variance for the LV scores, while in PLScow Mode the outer

weights are constrained to have a unitary norm thus importing the classical normalization constraints

of PLS Regression.

In the next section, we briefly review the standard PLS Path Modeling algorithm by enhancing

some problematic issues when blocks are neither unidimensional nor full dimensional. Then we present

the use of PLS Regression to estimate measurement model outer weights while providing the theoretical

foundations of this methodological proposal. We show how the newly proposed modes are linked to

the standard Mode A and Mode B outer estimates in PLS-PM as well as to the New Mode A recently

proposed in a criterion-based approach by Tenenhaus & Tenenhaus (2011).

Brief review of PLS Path Modeling

PLS Path Modeling aims to estimate the relationships among J blocks of manifest variables

(MVs), which are expression of J unobservable constructs, that is the latent variables. The Predictive

Path Model consists of two sub models: the Structural (or Inner) Model, which specifies the relation-

ships between the LVs, and the Measurement (or Outer) model, which relates the MVs to their own
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LV.

PLS Path Modeling uses an iterative algorithm to obtain LV estimates through a system of

multiple and simple linear OLS regressions. The iterative algorithm works by alternating inner and

outer estimates of the LVs. In particular, in the outer estimation step each LV is obtained as a

standardized weighted aggregate of its own block of manifest variables, i.e. vj ∝
∑

hwhjxhj = Xjwj

where xhj (h = 1, . . . , p; j = 1, . . . , J) is the generic centered and properly scaled manifest variable of

the j-th block Xj . Then, in the inner estimation step each LV is obtained as a standardized weighted

aggregate (zj) of the adjacent LVs, i.e. zj ∝
∑

vj′→vj
ej′jvj′ , where the connections between LVs are

defined by the user in the path diagram structure. These two steps are iterated till convergence on

the outer weights (wj). Convergence is measured in terms of stability of the numerical values over

two successive iterations.

Inner weights (ej′j) can be computed according to three different schemes: the centroid scheme,

the factorial scheme and the path weighting scheme. In any case, the inner weights are a function of

the linear correlation between adjacent LVs. In our proposal we focus on the outer estimation phase

as the schemes for the inner estimation remain unchanged.

Computation of the outer weights (wj), instead, depends on the type of relation between a block

of MVs and the underlying LV in the measurement model. We may assume that each block of MVs

in the model is outwards directed (also called reflective block in applied research) or inwards directed

(also called formative block in applied research). In the case of an outwards directed block, MVs are

assumed to be the reflection in the real word of a latent concept. In other words, the LV is considered

as the cause of the covariance between the MVs within the block. As a consequence, the generic outer

weight used in the outer estimate of the LV is the regression coefficient of the simple linear regression

of each MV on the inner estimate of the corresponding LV, i.e. whj = cov(xhj , zj) taking into account

that zj is standardized. This outer estimation is named Mode A in PLS-PM literature. In an inwards

directed scheme, instead, each LV is formed by its own MVs measuring different aspects of the same

latent concept. In other words, the LV is caused by its own indicators. In this case, the outer weights

are the regression coefficients from a multiple regression model of the inner estimate of each LV on its

own MVs, i.e. wj = (X′jXj)
−1X′jzj . This outer estimation is named Mode B in PLS-PM literature.

Outwards directed models require blocks to be homogeneous and unidimensional. However, it

may happen in many real applications that unidimensionality, as well as homogeneity, are not verified.

In such cases, in standard PLS-PM applications users might pragmatically switch from Mode A to

Mode B. Statistically speaking, switching from simple regressions to a multiple regression implies

considering the block of MVs as full dimensional, i.e. the LV being formed by as many dimensions

as there are MVs in a block. Indeed, this is also a quite rare situation in real practice as most often

blocks are neither unidimensional nor full dimensional. Due to a certain degree of multicollinearity in

each block of MVs, it is important to consider just a few dimensions, i.e. we need an estimation of the

measurement model capable to yield solutions somewhere between the classical Mode A and Mode B.

The same rationale applies when the user specifies inwards directed blocks that happen to vio-

late the independence hypothesis of the classical multiple regression model and are affected by mul-

ticollinearity problems possibly leading to wrongly non significant or non interpretable outer weights

with incoherent signs between the weight of a MV and its correlation with the corresponding LV. The

current PLS-PM literature suggests to circumvent such problems in a simplistic and unsatisfactory

way by interpreting only the standardized loadings (i.e. correlations between a LV and its own MVs)

and not the outer weights in case Mode B is used.

PLS Regression in PLS Path Modeling

Starting from the above considerations, a new way to compute the outer weights in the case
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of inwards directed blocks has been recently proposed by Esposito Vinzi & Russolillo (2011). This

approach uses PLS Regression (PLS-R) (Wold et al., 1983; Tenenhaus, 1998) as a method to esti-

mate the outer weights in the measurement model under the classical PLS-PM constraints of unitary

variance of the LVs. We refer to this approach as PLScore Mode.

In this approach, we always deal with univariate PLS regressions (PLS1) where the dependent

variable is the LV inner estimate zj while its own MVs in Xj play the role of predictors. Then we

search for m orthogonal components, tkj (k = 1, · · · ,m), which are as correlated as possible to zj and

also explanatory of their own block Xj . Usually, the number m of retained orthogonal components is

chosen by cross-validation or defined by the user.

PLScore Mode leads to a compromise between a multiple regression of zj on Xj (Mode B) and

a Principal Component Analysis of Xj (Mode A for a single block).

The first PLS component (t1j), if xhj are standardized variables, is defined as:

t1j = Xja1j =
1√∑

h cor
2(zj ,xhj)

∑
h

cor(zj ,xhj)(1)

In case the MVs xhj are not standardized, the correlation is replaced by the covariance. Then the

vector a1j is normalized and a regression of zj on t1j (expressed in terms of Xj) is run. To conclude,

the residuals zj1 and Xj1 of the regressions of zj and Xj on t1j are computed as :

zj1 = zj − c1jt1j(2)

and

Xj1 = Xj − t1jp
′
1j(3)

where c1j is the regression coefficient from the regression of zj on t1j , and p1j is the vector of regression

coefficients from the regression of the variables in Xj on t1j .

The second component is defined as t2j = Xj1a2j = Xja
∗
2j where a∗2j differs from a2j as the

former refers to the original variables in Xj while the latter refers to the residuals and would be very

difficult to interpret. Successive orthogonal components are obtained by iterating the procedure de-

scribed above on residuals from the previous component, and are assessed by means of cross-validation

or chosen by the user.

Applying PLScore Mode requires to choose a proper number of PLS components in the PLS

regression for each block. This allows considering PLScore Mode as a fine tuning of the analysis

between two extreme cases: classical Mode A in case of one PLS-component; classical Mode B in

case of as many PLS-components as there are MVs in the block. Indeed, a one-component PLS

Regression model coincides with running simple linear regressions of each MV on the inner estimate of

the corresponding LV while a full-dimensional PLS Regression model coincides with running a multiple

regression of the LV inner estimate on its own MVs.

Thus, the m-components PLS regression model yielding the weights for the outer estimation vj

is:

zj = c1jt1j + c2jt2j + · · ·+ cmjtmj + zjm(4)

where zjm is the residual of zj from the m-components PLS regression model.

Remembering that the generic k-th component for the j-th block is defined as tkj = Xj(k−1)akj with

Xj(0) = Xj , equation (4) can be rewritten as:

zj = c1jXja1j + c2jXj1a2j + · · ·+ cmjXj(m−1)amj + zjm(5)

that in terms of original variables becomes:

zj = X(c1ja1j + c2ja
∗
2j + · · ·+ cmja

∗
mj) + zjm.(6)

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS037) p.4767



Mode A PLS-PM New Mode A PLS-PM (RGCCA with τj = 1)

wj = X′j(
∑

j′ eqq′Xj′wj′) wj = X′j(
∑

j′ ejj′Xj′wj′)

wj =
√
N ×wj/‖Xjwj‖ wj = wj/‖wj‖

vj = Xjwj vj = Xjwj

Table 1: Iteration loop of PLS-R, PLS-PM with Mode A and PLS-PM with New Mode A. The iteration steps

are repeated for each j and j′ in 1 : J with j 6= j′.

PLScore outer weights correspond to PLS regression coefficients

wj = (c1ja1j + c2ja
∗
2j + · · ·+ cmja

∗
mj)(7)

and each LV outer estimate vj is obtained as the predicted value of zj in (6), i.e.:

vj = w1jx1j + w2jx2j + · · · · · · · · ·+ wpjxpj(8)

The outer estimates of the LVs are further transformed so as to satisfy the classical normalization

constraint: var(vj) = 1.

More recently, Tenenhaus & Tenenhaus (2011) have presented a Regularized Generalized Canon-

ical Correlation Analysis (RGCCA) as a new approach to multiple table analysis via a modified PLS-

PM algorithm. In particular, by using shrinkage estimators for the block covariance matrices, they

prove that if the shrinkage constants τj are all fixed to zero then classical PLS-PM Mode B solution is

obtained. Conversely, if the shrinkage constants are all fixed to one, New Mode A is defined. This new

estimation mode has the major advantage, as compared to classical Mode A, to maximize a known

criterion. Indeed, Tenenhaus & Tenenhaus (2011) have proved that fixing the shrinkage constants to

zero (i.e. standardized LV scores) leads to criteria based on maximizing correlations between adjacent

LVs while fixing the shrinkage constants to one (i.e. outer weights with unitary variance) leads to

criteria based on maximizing covariances between adjacent LVs.

Table 1 summarizes the algorithmic steps for estimating outer weights and LV scores by com-

paring PLS regression, the standard PLS-PM algorithm and the modified PLS-PM algorithm for New

Mode A.

Following the same rationale, if we normalize the outer weights to unitary variance at each step

of the algorithm PLScore Mode and we use a one-component PLS regression as the outer estimation

mode, then we obtain the same solution as the above mentioned New Mode A. We refer to this new

approach as PLScow Mode. If more components are considered (while keeping the normalization

constraint on the outer weights), PLScow Mode yields a new range of solutions between New Mode A

(one PLS component) and a New Mode B (as many PLS components as there are MVs in a block).

The criterion, if any, being optimized by the multi-component solutions of PLScow Mode still

needs to be investigated. However, we have empirically shown that New Mode B performs very close

to classical Mode B in terms of correlations between adjacent LVs and, in any case, better in terms of

covariances. The number of components might be then chosen no longer by cross-validation but so as

to maximize a specific fitting criterion, such as the GoF .

Conclusions and perspectives

In this paper we have proposed an integrated PLS regression-based approach specifically apt to

dealing with multidimensional blocks both in component-based SEM and generalized multiple table

analysis. By using different constraints, this approach yields two new estimation modes for outer

weights in the measurement model: PLScore Mode and PLScow Mode. Ongoing research aims at

investigating their statistical properties as well as at providing guidelines for use and interpretation
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in applied research. As a promising research avenue, the features of PLS Regression are also fruit-

fully exploited in the inner estimation phase of PLS-PM and for estimating path coefficients upon

convergence of the PLS-PM algorithm when the classical OLS framework is not feasible.

REFERENCES (RÉFERENCES)
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ABSTRACT

The PLS approach to structural equation modeling (PLS Path Modeling, PLS-PM) is currently

considered as a component-based approach. PLS-PM has been more recently revisited also as a general

framework for multiple table analysis. Here we present two new approaches to estimating outer weights

in PLS Path Modeling framework. Nous proposons ici deux nouvelles mthodes d’estimation des poids

externes dans le cadre de la PLS-PM: the PLScore Mode and the PLScow Mode. Both modes involve

integrating a PLS Regression as an estimation technique within the outer estimation phase of PLS-

PM. However, in PLScore Mode a PLS Regression is run under the classical PLS-PM constraints of

unitary variance for the LV scores, while in PLScow Mode the outer weights are constrained to have

a unitary norm thus importing the classical normalization constraints of PLS Regression. We show

how the two new modes are linked to PLS-PM classic outer estimation methods, that is Mode A and

Mode B, as well as to New Mode A recently proposed by Tenenhaus & Tenenhaus (2011).
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