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1 The importance of ordinal data

The measurement level plays a very important role in the design and the execution of a research plan.

There is a relationship of tension. Certain characteristics can have a measurement level of their own,

but the researcher can decide otherwise.

A well-known example is given by the school results of pupils. The measurement level is in itself

ordinal, because every teacher will admit that marks are relative in nature, that the distance from

5 to 6 on a maximum of 10 is not the same as from 7 to 8, and that the marking of exams is done

according to a system of comparison in pairs. The analysis of school results thus implies a jump from

the ordinal to the quantitative measurement level.

The reverse occurs often as well. The determination of age by means of the trichotomy young,

median, old is a reduction of the quantitative to the ordinal measurement level.

The researcher can therefore do two things. Being a kind of social architect, he can use

expensive and refined materials, whereas he might have reached the same results with cheaper means.

On the other hand, he can prescribe materials that are too cheap and that affect the solidity of the

building.

But there are some important advices we would like to give. 1) We think that one should

start a research with materials that are as refined as possible. For example, one should not start

with the variable age as a trichotomy, because once this is done, there is no way back. If on the other

hand, one starts with age in numbers of years, then this variable is always still collapsable. 2) A

second advice, in line with the first, is that one should not create a loss of information. This is

among others done in dummy coding. For example, variable social status with ranks low, medium

and high can be coded by means of two 0-1 coded dummies D1 and D2, where D1 = 0, D2 = 0 means

low status, D1 = 1, D2 = 0 means medium status and D1 = 0, D2 = 1 means high status. As such a

dummy coding could also be performed on the nominal variable nationality with categories Belgian,

British and Irish, which is not ordinal, this procedure creates the loss of ordinal information. This is

not recommendable.

As for ordinal variables such as social status, some features are very important. Next to

identifiability of the characteristics low, medium and high, which is also a feature of nominal variables,

ordinal variables do show an order. But unlike quantitative variables of interval measurement level such

as degrees of Celsius, the distances between the ranks can not be determined, and unlike quantitative

variables of ratio measurement level such as age, the ratios between the ranks can not be determined.

For example, in a status scale UU,LU,UM,LM,UL,LL (where U means upper and L means lower)

we can not say that the distance between lower lower class LL and upper lower class UL would be
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the same as the distance between upper lower class UL and lower middle class LM. Another example

of this would be a scale of occupational level: we can not say that the difference in level between

unskilled workers and skilled workers is the same as the difference between skilled workers and lower

employees. And also the ratios can not be determined: we can not say that the ratio between the

lower upper class LU and the upper lower class UL is 5/2, because that would mean that we have

coded UU,LU,UM,LM,UL,LL as 6, 5, 4, 3, 2, 1, which would be to treat an ordinal scale as if it were

a ratio scale.

An extreme example of such anomaly would be the use of the alphabet by numbers: a = 1, b =

2, c = 3, . . . , z = 26. We would then give my colleague Vahid the score (v=22) + (a=1) + (h=8)

+ (i=9) + (d=4) = 44 and I myself, Jacques, would obtain the score (j=10) + (a=1) + (c=3) +

(q=17) + (u=21) + (e=5) + (s=19) = 76. And the mean of our two names would be (44+76)/2 = 60.

Everybody would understand that we can not calculate the mean name of the conference members

like this, but that is what we are in fact doing when we treat an ordinal scale as if it were quantitative.

2 Review of several ordinal data analysis methods

There are many different methods developed in order to face with modeling ordinal data, like Kruskal-

Wallis analysis of variance for ranks (Kruskal and Wallis (1952)), monotonic analysis of variance

(Kruskal and Carmone (1968)), isotonic regression analysis (Barlow et al. (1972)), LISREL for

ordinal data (Jöreskog (2005)), log-linear models for ordinal data (Goodman (1979)), polytomous

Mokken scale analysis (Mokken (1971)), multidimensional unfolding techniques (MUDFOLD), see,

e.g., Coombs (1964), the all Gifi system for nonlinear multivariate analysis, e.g., homals, princals,

canals, etc., (Gifi (1990)), Spearman’s-RHO, Kendall’s-TAU (Kendall (1962)), Somers’-D, ordinal

path analysis (Smith (1974)) and many other measures and methods. In this section we are going to

discuss some of the most important ones.

There are three main approaches in dealing with ordinal data. The first approach is lowering

the scale and treat ordinal data as nominal, which is usually done by dummy coding, the second

approach is using some appropriate re-scaling methods, and then treat ordinal data as if they are

quantitative. The third approach is treating ordinal data as truly ordinal.

In this paper we will make a plea for the Kendall-group of coefficients, in which the third ap-

proach is used. Recently there have been developed some promising new methods in which the third

approach seems to be chosen, i.e., the logit models with ordinal response variable. Ann A. OConnell

(2006) distinguishes the cumulative odds model, the continuation ratio model and the adjacent cate-

gories model. The restriction of these models is that the ordinality is only connected with the outcome

variable. The measurement level of the independent variables is not discussed. But in most of the

mentioned procedures, the second approach is used. In some cases this shift of measurement

level is not a capriole. For example, when we use Spearman’s RHO for the social status variable

with ranks UU,LU,UM,LM,UL,LL and some other variable, then the numbers 6,5,4,3,2,1 are used for

the six ranks, whence the differences between the ranks are assumed to be equal. The same occurs

when one has Likert-scaled variables with ranks strongly agree, agree, don’t know, disagree, strongly

disagree (++,+,?,-,–) and one performs alpha factor analysis to calculate Cronbach’s alpha. One

then assigns the numbers 5,4,3,2,1 to the five ranks ++,+,?,-,–. We would like to call this the vul-

gar quantification. It is a thoughtless and inadmissible shift of measurement level which is beyond

words.

Something similar is done in Kruskal and Wallis analysis of variance: the dependent variable

is ordinal and receives rank numbers 1,2,3,4, ect., of which arithmetic means are calculated, just like

in Spearman’s coefficient. And also isotonic regression of Iman and Conover (1979) is totally based

on Spearman’s RHO. Monotonic ANOVA of Kruskal and Carmone (1968) finds a monotonic function
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of the original response variable Y that is maximally correlated with an additive model. A measure

of departure of fit, called stress, is minimized, subject to obeying the monotonic constraints in the

criterion variable. Here too, rank numbers are used and arithmetic means thereof are calculated,

soundly and thoroughly.

A way out seems to be Jöreskog’s LISREL for ordinal data. Here each ordinal variable, say B,

is considered to be a manifestation of an underlying unobserved metric variable Z, which is standard

normally distributed. The ranks of B then correspond to some values of Z, which are called thresh-

olds and which are computed by using the inverse cumulative normal distribution. For the correlation

between two ordinal variables A and B, one assumes underlying variable Z for B and underlying

variable Y for A, and the correlation between A and B is called polychoric correlation. An underlying

regression model is assumed and an iterative procedure minimizes the distance between the observed

frequencies and the expected frequencies as given by the underlying variable model. Often a two step

procedure is applied: 1) estimation of the thresholds; 2) iterative estimation of the polychoric corre-

lation. An extension of this procedure is an approach based on the matrix of polychoric correlations

between many ordinal variables in a multivariate analysis.

It goes without saying that this LISREL for ordinal variables is totally dependent on the as-

sumption of underlying unobserved metric variables that are standard normally distributed. Kampen

(2001) points out that researchers in practice are unable to verify the assumptions about underlying

variables, and I add, let alone the existence of such underlying variables. It looks like as if we are in

the cave of Plato, with a beautiful reality outside with a shining sun and green grass, which we will

never see, and where we have to rely on the shadow-images on the walls of the cave. So, this kind

of ordinality of Jöreskog’s LISREL could be called ”Plato-ordinality” or ”Cave-ordinality”. It is

highly imaginary and tends to idealism rather than to a realistic approach.

In Plato’s Allegory of the Cave, Socrates describes a group of people who have lived chained to the wall of a cave

all of their lives, facing a blank wall. The people watch shadows projected on the wall by things passing in front of

a fire behind them, and begin to ascribe forms to these shadows. According to Socrates, the shadows are as close

as the prisoners get to viewing reality. He then explains how the philosopher is like a prisoner who is freed from the

cave and comes to understand that the shadows on the wall do not make up reality at all, as he can perceive the

true form of reality rather than the mere shadows seen by the prisoners.

Another approach is the all Gifi system for nonlinear multivariate analysis, e.g., categorical re-

gression analysis, categorical pca, nonlinear canonical correlation analysis, etc., which can be analyzed

in SPSS-Categories. Here the ordinal variables are assigned numeric values through a process called

optimal scaling. Such numeric values are referred to as category quantifications. Optimal scaling is

achieved by the minimization of a least squares loss function For example, in nonlinear PCA, model

estimation and optimal quantification are alternated through use of an iterative algorithm that con-

verges to a stationary point where the optimal quantifications of the categories do not change anymore.

Optimal scaling with alternating least squares replaces the category labels (here: ranks) with category

quantifications in such a way that as much as possible of the variance in the quantified variables is

accounted for. Specifically, the method maximizes the first p eigenvalues of the correlation matrix of

the quantified variables, where p indicates the number of components that are chosen in the analysis.

This criterion is equivalent to the previous statement that the aim of optimal scaling is to maximize

the VAF (Variance Accounted For) in the quantified variables.

In Gifi there are three levels of analysis, nominal, ordinal and numeric. But here, in our

view, ordinal does not really mean ordinal. As indicated, the category quantifications maximize

the VAF. Now, in doing so the different levels of analysis point to different requirements. In the

nominal case, the requirement is that individuals who scored the same category on the original

variable also obtain the same quantified value. But notice that the choice of nominal level of analysis
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does not imply that the original variable is measured at the nominal level. For an ordinal or even a

numeric variable, it is equally well possible to choose the nominal level of analysis. In the ordinal

case, the additional requirement is that the quantifications of the categories should respect the order

of the original variables. If the original category labels are increasing, then the transformation to

quantifications will be monotonically non-decreasing, where some consecutive categories may obtain

the same quantification, referred to as ties, so that a step function is obtained. If all variables are

at the numeric level of analysis, no optimal quantification is performed and variables are simply

standardized, in which case potential nonlinear relationships among variables are not accounted for.

So, if one wishes to account for nonlinear relations between numeric variables, one has to choose for

a non-numeric level of analysis, ordinal or nominal.

The ordinal level of analysis described above makes use of step functions. As an alter-

native, one can use a procedure of smoothing. This is done in spline transformation, monotonic

or nonmonotonic. Now, suppose that the relationship of a specific variable with other variables in a

multivariate analysis is such, that the quantifications of categories go first up and then down, then this

will be seen only when the nominal or nonmonotonic spline level is chosen. However, the ordinal and

monotonic spline level wil not show this; they will show an increase of the quantifications of categories

up to a certain point and for the higher category labels there will be ties. And the numeric level of

analysis will teach us nothing, the plot of original scores and quantifications after transformation will

just show a linear function, a straight line.

The consequence is that ordinal is not really ordinal in this Gifi-system. First of all, as stated

above, VAF is the criterion in use, which means that the behaviour of a variable is guided by its

relationship with all the other variables in the analysis. And secondly, the choice of ordinal level of

analysis, and also monotonic spline, brings about a smoothing out with ties, and consequently, only

the nominal level of analysis, and also nonmonotonic spline, show us the real behaviour of a variable,

e.g., going first up and then down. B-splines do not alter the basic argument. In a personal visit

and conversation with the Gifi-people at University of Leiden in The Netherlands, they admitted that

ordinal is not really ordinal. We will call this ”the brain in a vat ordinality”, because the criterion

of ordinality in use is not ordinality, but something else, e.g., the relationship with other variables or

the variance accounted for (VAF) combined with the procedure of smoothing out.

In philosophy, the brain in a vat is an element used in a variety of thought experiments intended to draw out certain

features of our ideas of knowledge, reality, truth, mind, and meaning. It is drawn from the idea, common to many

science fiction stories, that a mad scientist, machine or other entity might remove a person’s brain from the body,

suspend it in a vat of life-sustaining liquid, and connect its neurons by wires to a supercomputer which would provide

it with electrical impulses identical to those the brain normally receives. According to such stories, the computer

would then be simulating reality (including appropriate responses to the brain’s own output) and the person with

the ”disembodied” brain would continue to have perfectly normal conscious experiences without these being related

to objects or events in the real world.

The mad scientist, let us call him Frankenstein, is here the Gifi-system, which is calculating at

a very sophisticated level, attaching the variables at a supercomputer so to speak, and in this way

simulating a world, which is in fact not equivalent to the real world.

As we are in the dark about the real world, we might also call this ”the Zhuangzi ordinality”

or ”butterfly ordinality”, referring to the butterfly dream of Zhuangzi.

Once Zhuangzi dreamt he was a butterfly, a butterfly flitting and fluttering around, happy with himself and doing

as he pleased. He didn’t know he was Zhuangzi. Suddenly he woke up and there he was, solid and unmistakable

Zhuangzi. But he didn’t know if he was Zhuangzi who had dreamt he was a butterfly, or a butterfly dreaming he

was Zhuangzi. Between Zhuangzi and a butterfly there must be some distinction!
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3 Treating ordinal data as truly ordinal. The case of Kendall’s TAU

We know that it will sound old-fashioned to dig up the treatment of Sir Maurice Kendall of the forties.

And that is what many people said at first, when they heard of our intention. But on second thought

most colleagues agree that the work of Kendall and his successors must be seen as a forgotten treasure.

The reason for this is clearly formulated by Jarl Kampen (2001) in his dissertation on ordinal variables

and their analysis. In a chapter on measures based on concordancy, he deals with Kendall’s TAU,

Somers’ D and Goodman and Kruskal’s GAMMA and he writes: ”These measures have gradually

lost their appeal in applied research, because their applicability in multivariate research is limited.

For example, an alternative measure is the polychoric correlation , which can be used in multivariate

regression and factor analytic models. Equivalent extensions have never been developed for either

Kendall’s τb, Goodman and Kruskal’s GAMMA or Somers’ D, nor are they likely to be developed

because of computational difficulties in determining standard errors of the involved parameters and

because several alternative models are already in high degree of development.”

We would like to protest here. For, there exists a literature about multiple tau, partial tau

and partial Somers’ d, which is on a parallel with multiple correlation, partial correlation and partial

regression coefficient, respectively. In the limited space we have here, we would like to raise a corner

of the veil. Of course, Jarl Kampen is right in his observation that several alternative models are

in high degree of development. LISREL for ordinal data, loglinear modeling for ordinal data, the

all Gifi system for nonlinear multivariate analysis, and others, have overruled the Kendall-group of

coefficients, whence the latter have been snowed under. But then we would like to protest against

these historical developments.

One of the reasons of our protest is the fact that, unlike many developments in the analysis of

ordinal data, the Kendall-group of coefficients are truly ordinal. To explain this, we compare with

Spearman’s coefficient. Spearman’s coefficient has an enormous drawback : the shift of measurement

level. Variables measured at the ordinal level are treated as if they were quantitative, with equal

intervals between the distinctions. Take, for example, occupational level in which the lowest dictinction

is the unskilled worker, followed by the skilled worker and thereafter by the lower employee etc. Then

it goes without saying that we are in the dark about the distances between unskilled and skilled worker

and between skilled worker and lower employee. We can not treat these distances as equal, and that

is what Spearman’s coefficient does, because the ranks are given the numbers 1, 2, 3 etc. This will

not be done by Kendall’s coefficient TAU and that is why TAU will be really superior in terms of

appropriateness for the ordinal measurement level.

Based on Daniels (1944) Kendall’s TAU is equal to Pearson’s r in which ”variation” (sum of

squares) and ”covariation” (sum of cross-products) are replaced with ”ordinal variation” and ”ordinal

covariation”. The generalized coefficient of covariation Γ is as follows,

Γ =

∑
xijyij√∑
x2
ij

∑
y2
ij

Consider X and Y as interval measures and xij = Xi −Xj and yij = Yi − Yj , then Γ is Pearson’s r, if

X and Y are rankings and xij and yij are the differences between ranks, then Γ is Spearman’s RHO.

Also, if we assign +1 to xij if Xi is greater than Xj and −1 otherwise and the same for yij , then Γ

will be Kendall’s TAU. Somer’s D which is calculated using Kendall’s TAU has also an analogy with

regression coefficients.

There is an interesting connection between how Kendall’s TAU treats ordinality and French

sociologist Pierre Bourdieu’s analysis of class structure in society. In his book ’Distinction’, on the

basis of thorough survey-analysis and using criteria such as economic, social and cultural capital,

Bourdieu distinguishes three classes: dominant class, middle class and working class, and also class
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fractions within these classes. It is very important to keep in mind that this stratification of society

does not lend itself to a substantialist reading. Bourdieu expresses that the distinctions between classes

get their meaning by means of a relational logic. The manners and life-styles to which distinctions refer

do not have an innate quality giving them the meaning they have, but emerge by virtue of differences

in social space, drawing difference out of the undifferentiated, so to speak.

The analogy with ordinal measurement is straightforward. Making use of +1 when a difference

(xi − xj) shows xi > xj , and -1 when xi < xj is the case, and 0 when xi = xj , and doing the

same for Y , no substantialist reading of ordinality but rather a relational logic - we might call it

a relational topology - is involved in Kendall’s TAU. In other words, Kendall’s TAU measures the

association between variables without measuring the variables themselves. It is therefore a pity (a

shame?) that Kendall’s and Somers’ coefficients and their multivariate extensions have not received a

more important status in the statistical literature. We would like to invite statisticians in the world to

forget about Spearman, forget about LISREL for ordinal data, forget about the all Gifi treatment of

ordinality, and put the forgotten treasure, which Kendall’s TAU is, again in the forefront.

4 Conclusion

The 18th century philosopher Immanuel Kant has written three Critiques, Critique of Pure Reason,

Critique of Practical Reason and Critique of Judgement. The latter contains two parts, one on

aesthetic and one on teleology. In the part on teleology Kant asks the question whether there are ends

in nature. Does the giraffe have a long neck in order to reach food at a certain height? Are beast of

prey eyes on the wings of butterflies present for hostile birds to be deterred? Do flies have compound

eyes in order to be quick in escaping from enemies? Does the skin of the chameleon take the colour

of the environment in order to hide from possible enemies? In other words, are there ends in nature?

Kant’s answer is: No, there are not. But he gives the advice to scientists to do as if there are ends,

because the teleological form of questioning is a stimulation for scientific research and it is a good

attitude to suppose that nothing exists just like that, without an end.

This as if philosophy, which is even the title of a voluminous book of Hans Vaihinger ’Die

Philosophie des Als Ob’ (The Philosophy of the As If), seems to be the attitude of many statisticians

dealing with ordinal data. They do as if ordinal variables are scaled on the quantitative measurement

level, even if they in fact know better. This attitude looks very much as if a mechanism of Suspension

of Disbelief is into play, which is operating when we read a book or look a movie and we are convinced

that the fantastic world which is created can not be true, but where we prolonge our belief in the

story, not because we really believe it but because we like this world of fantasy so much.

Suspension of disbelief is a formula for justifying the use of fantastic or non-realistic elements in literature. It was

put forth in English by the poet and aesthetic philosopher Samuel Taylor Coleridge, who suggested that if a writer

could infuse a ”human interest and a semblance of truth” into a fantastic tale, the reader would suspend judgement

concerning the implausibility of the narrative. The phrase ”suspension of disbelief” came to be used more loosely

in the later 20th century, often used to imply that the onus was on the reader, rather than the writer, to achieve it.

It might be used to refer to the willingness of the audience to overlook the limitations of a medium, so that these

do not interfere with the acceptance of those premises. These fictional premises may also lend to the engagement of

the mind and perhaps proposition of thoughts, ideas, art and theories.

In this contribution we have argued against such an attitude. We have chosen for an old contribution

of the forties, which is Kendall’s TAU and the coefficients related to it. There is no as if philosophy

or suspension of disbelief here. On the contrary, ordinality is treated as true ordinality. And it has

even the bonus that scientific thinking of ordinality in terms of a relational logic is contained in it.
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