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1 Introduction

In a process of Bayes inference which formulate iterative procedure of scientific research, we select

a prior distribution based on cumulative experiences, experiments and knowledge, and compose a

probability model under the prior distribution. If the model is correct, we can make proper inferences

about parameter using a posterior distribution which is combination of prior information with data

information. However, the posterior distribution is composed using only a pair of data that has

actually occurred, so it is important to make diagnosis and checking for the model. Then, we can

diagnose the model in the following three terms at least: (1) Sensitivity analysis for changes of prior

distribution and likelihood, (2) Appropriateness of posterior inference for the model in the context

of the actual situation, (3) Fitness between the model and the data. In this paper, we notice on a

model diagnosis in terms of (3). In the framework of traditional model selection such as Bayesian

information criteria (BIC) (Schwarz, 1978) and Bayes factor (BF), a model with highest posterior

model probability is selected. However, in fact, we are often interested to data which will be gained

in the future. Therefore, we consider two diagnostic methods that focus on prediction: the Bayesian

predictive information criterion (BPIC) (Ando, 2007) and the prior and posterior predictive checking

approach (Prior- and Post-PCA) (Box, 1980; Rubin, 1984; Gelman, Meng and Stern, 1996; Daimon

and Goto, 2007).

BIC which is most familiar information criterion in Bayesian approach is a criterion of model

evaluation based on a posterior probability and select a best model with the highest posterior proba-

bility among several model candidates. Bayes factor, extended Bayesian information criteria (Konishi

et al., 2004) are well-known as other model evaluation criteria in the same position. Recently, BPIC

has been proposed as new diagnosis method which evaluates model fitness from a position of the

prediction. BPIC selects a model with the highest expected log likelihood.

Prior-PCA provides checking models or indices by comparing data to the prior predictive dis-

tribution. This approach contrasts the prior information and the data information, and checks their

compatibility. Post-PCA replaces the role of the prior distribution in Prior-PCA with it of the poste-

rior distribution. Main feature of Prior- and Post-PCA is to be able to check not only a model itself

in themselves but also interesting indices or statistics by setting proper predictive checking functions.

Therefore, we can judge whether the model is suitable for taking the specific occasion or not. It is

considered that this feature is quite effective because we don’t always have to focus on the model itself

and can select a proper model which serves the purpose of the research.

Though Bayesian approach has the advantage that it is possible to select a prior distribution

according to an individual situation, therefore, there exists many models which should be evaluated.
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So we consider that a specified situation suitable for each model diagnosis may exist and it’s also

true in BPIC and PCA. But the profiles about BPIC and PCA haven’t been clarified enough yet. In

this paper, our purpose is to make clear the properties of BPIC and PCA and propose the effective

diagnosis situations.

2 Bayesian predictive diagnosis

2.1 Bayesian predictive information criterion

Ando(2007) proposed BPIC as an estimator of the posterior mean of the expected loglikelihood of

the predictive distribution. In this criteria, we can evaluate the predictive distributions of hierarchical

and empirical Bayes model even when the assumed family of probability distributions doesn’t always

contain the true model. We set a prior probability, a likelihood function of sampling distribution and

a posterior probability as p(θ), p(y|θ) and p(θ|y). Under the weak regular conditions (Unimodal of

the posterior distribution, consistency of the posterior mode, asymptotic normality), BPIC is defined

as follows:

BPIC = −2

∫
log{p(y|θ)}p(θ|y)dθ + 2nb̂(Ĝ)
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and θ̂n is the posterior mode, p is the number of parameter, n is the sample size. We select a lowest

model of BPIC as well as other information criteria such as AIC.

2.2 Predictive checking approach

2.2.1 Prior predictive checking approach

Box(1980) proposed Prior-PCA as the diagnostic method that focused on prediction. In the prior

predictive checking approach, a model is evaluated by comparing the prior predictive distributions

of future observations to the data that have actually occurred and calculating the prior predictive

checking probability (Prior-PCP).

In Pre-PCA, a Bayes model is given by

p(y, θ) = p(y|θ)p(θ).

Then, a prior predictive distribution for the observations of the future, y, is obtained by

p(y) =

∫
θ∈Θ

p(y, θ)dθ.

Given the actual data yd, Prior-PCA for the model itself is calculated by comparing the prior density

at yd, p(yd) to the density function p(y) as the below:

Pr[p(y) < p(yd)]
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Tab.1: BPIC and PCP for triglyceride concentration data (Wood, 1973)

　 Prior distribution µ ∼ N[µ0, σ
2
0]

　 N[125, 20] N[200, 20] N[125, 4000] N[200, 4000]

BPIC 40.35 41.36 41.98 41.98

Prior-model 0.527 0.000 0.528 0.461

PCP Post-model 0.527 0.003 0.528 0.527

Prior-mean 0.887 0.334 0.978 0.255

Post-mean 0.900 0.214 0.997 0.884

We can assess not only the model itself but also interesting indices such as sample mean, sample

variance or on which the decision making is based. When we express an interesting indice as g(y),

Pre-PCA for it is as the below:

Pr[p{g(y)} < p{g(yd)}]

2.2.2 Posterior Predictive checking approach

Rubin(1984) proposed Post-PCA, as an alternative method of the prior predictive checking approach.

In the posterior predictive checking approach, a model is evaluated by comparing the posterior pre-

dictive distributions of future observations to the data that have actually occurred and calculating

the posterior predictive checking probability (Post-PCA). In order to evaluate a model under the

prior predictive distribution in Pre-PCA and the posterior predictive distribution in Post-PCA, the

large difference in the prior and posterior predictive checking probabilities indicates that the prior

distribution is wrong.

3 Examination on some literature example

We applied these Bayesian predictive diagnoses which were introduced in Section 2. to data of triglyc-

eride concentration in the plasma (Wood, 1973), and evaluated the appropriate of several models.

These data (sample mean 126.8, sample variance 3973) were measured to examine whether improve-

ment in lifestyles impact on the measurements by a team in Stanford University, and we used the

pre-treatment data here. The sample size was 30. We assumed that the data followed N[µ, σ2] where

the variance σ2 was known and the mean µ was given the normal prior distributions N[µ0, σ
2
0]. We

set the prior means µ0 as 125 (close to sample mean) or 200 (not close to sample mean) and the prior

variance σ2
0 as 20 (strong prior information) or 4000 (weak prior information). Then, we calculated

BPIC and PCP for model and sample mean and represented the results in Tab.1. In the table, we

gained the results that the model with the prior distribution N[125, 20] (strong prior information and

close to sample mean) had the lowest BPIC, but the model with the prior distribution N[125, 4000]

(weak prior information and close to sample mean) indicated higher Prior- and Post- PCP for sam-

ple mean than the model with the prior distribution N[125, 20] in PCA. However, Prior- and Post-

PCP for model were almost the same probabilities together. Moreover, BPIC for the model with weak

prior information (N[125, 4000] and N[200, 4000]) had much the same value and there wasn’t difference

between them.
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4 Simulation

In this section, we conduct some simulations for evaluating some relative performances of Bayesian

predictive diagnoses to BPIC. It is important to consider the amount of information of the prior

distribution in advance because it is useful to interpret the simulation results. So we express the

amount of information of the prior distribution (prior information) as ”the number of observation

which is required for obtaining the same estimate accuracy as Bayes estimator” (Mori, 2010) and

describe it as ”prior samples”.

In this simulation, we assume that independent samples follow a normal distribution with known

variance, yi ∼ N[µ, σ2](i = 1, 2, · · · , n), and a prior distribution of a mean µ follows a normal distri-

bution, µ ∼ N[µ0, σ
2
0(= σ2/n0)]. When we set a square error as a loss function and calculate Bayes

estimator of mean µ (expectation of posterior distribution) and Bayes risk, we can understand that

the prior distribution N[µ0, σ
2/n0(= σ2

0)] has a information about n0 samples. Considered to the

information about these prior sample, we plan the following simulations.

4.1 Purpose and Method

1. Because BPIC for the models with the prior distribution which has strong prior information

were much the same in the specified sample size, we explored the extent of prior information

which was needed for selecting appropriate model with true prior mean in BPIC through the

simulation. For n = 20, 50, 100, we calculated BPIC when the proportions of prior sample for

sample size (n0/n) were between 0.05 and 0.5, and examined how BPIC changes according to

the proportions.

2. We considered whether PCA could be featured in not sample size but the proportion of the prior

sample for sample size in this simulation. Because of the larger sample size the larger BPIC, we

focused on only PCA which evaluated the models in PCP between 0 and 1. For n = 20, 50, 100,

we calculated Prior- and Post-PCP for model and sample mean when the proportions for sample

size (n0/n) were 0.005, 0.05, 0.1, 0.5, 1, and compared the percents of these PCP in the same

proportions by these sample size.

4.2 Result

1. The results of 25, 50, 75 percents of BPIC were displayed in Fig.6. The dotted line in these

figures showed the results of the cases where prior mean was µ0 = 1.5 and the solid line in these

figures showed the results of the cases where prior mean µ0 = 1.5. Then, BPIC were the same

in both cases when the proportions of prior sample for the sample size were less 0.05. However,

as the proportions of prior sample for the sample size became larger than 0.1, the difference of

BPIC in both cases made increased. Therefore, it indicated that BPIC was suitable for model

diagnoses when the proportions of prior sample for the sample size were than 0.1.

2. The results of 25, 50, 75 percents of Prior- and Post-PCP for model and sample mean were

displayed in Fig.7. The left side in these figure represented the case of models with prior

distribution which has true prior mean and the right side in these figure represented the case

models with no true prior means. From the results, we found that Pre- PCP for model indicated

almost the same values regardless of sample size when prior mean was true and the proportions

were same. However, when prior mean wasn’t true, Prior-PCP for model were different by sample

size even though the proportions were same, and were smaller as sample size were larger. As

seen in Prior-PCP for model, we also found that Post-PCP for model and Prior- and Post-PCP
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for sample mean were almost same regardless of sample size when prior mean was true and the

proportions were same, but Prior- and Post-PCP for model and sample mean were smaller as

sample size increase when prior mean wasn’t true.

From these results, we gained the findings that the proportion of prior sample for sample size

(not sample size), impacted on Pre- and Post- PCP when prior mean was true.

5 Conclusion

In this paper, we focused on BPIC and PCA which evaluate models from the position of the prediction

and conducted some simulations as a purpose of clarifying the features of these model diagnoses in

the case of where mean parameter follows normal prior distribution. As the results, we found that

BPIC was suitable for model selections in the case with strong prior information but it wasn’t really

in the case with weak prior information. Also, we gained the findings that models with weak prior

information gave higher Prior- and Posterior- PCP for mean sample than those with strong prior

information in prior distributions with true prior mean, so PCA was also suitable for model selections

in the case with weak prior information contrary to BPIC. Moreover, it was indicated that if prior

mean included true value and the proportions of prior sample for sample size were same, these PCP

were much the same regardless of sample size. In summary from these findings, we found that an

improved model selection could be achieved by using both BPIC and PCA according to the situation.
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Fig.1: BPIC by the proportions of prior sample for the sample size
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Fig.2: Prior- and Post- PCP by the proportions of prior sample for the sample size
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