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1. Introduction

Air pollution monitoring and mapping at country level are challenging tasks due to the large
spatial scale and the amount of data involved. Nevertheless, they can be carried out successfully by
considering the proper space-time statistical models and mapping techniques, which provide estimates
of both the pollutant concentration and the respective uncertainty (Fassò and Cameletti, 2010).

Decision makers are called to take actions on the basis of the air quality assessment results in
order to reduce the impact of air pollution on population health (Scott, 2007). Although uncertainty
is crucial to analyze the results, it is not easily interpretable or transmutable into actions on its own,
especially when the impact on population health must be evaluated.

The aim of this paper is to provide a statistical framework for the country level population
risk assessment connected with air pollution. In particular, the risk is evaluated by estimating the
exceedance probability of pollutant concentration thresholds related to a set of airborne pollutants.
The exceedance probability is mapped over space and time and, when convolved with the spatial
population count distribution, it allows to derive aggregate risk indicator.

The rest of the paper is organized as follows. Section 2 introduces the Dynamic Coregionalization
Model which is used to map pollutant concentrations within a multivariate setting and to evaluate
uncertainty. Section 3 describes the population risk assessment procedure applied in Section 4 to the
Scottish air quality data for the year 2009. Conclusions and future works are reported in Section 5.

2. The dynamic coregionalization model

The Dynamic Coregionalization Model (DCM) is a hierarchical multivariate space-time model
introduced by Fassò and Finazzi (2011). Let yi(s; t) be the concentration of the i � th pollutant at
the spatial location s 2 D � R2 and at time t 2 N+, 1 � i � q. The model equation is the following:
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where xi(s; t) and �i are bi�dimensional vectors of covariates and coe¢ cients respectively. The
p�dimensional latent state z(t) has the Markovian dynamics z(t) = Gz(t� 1) + �(t) with G a stable
transition matrix and � � N(0;��). The q � p matrix K is the loading matrix of known coe¢ cients.
The w(s; t) = (w1(s; t):::wq(s; t)) is described by a q-dimensional linear coregionalization model (LCM)
of c components w(s; t) =

Pc
j=1w

j(s; t) where each wj(s; t) is a latent zero-mean Gaussian process

with covariance and cross-covariance matrix function �j = cov
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0 � q, 1 � j � c, with h = ks� s0k the Euclidean distance between s and s0 Each Vj

is a correlation matrix and each �j is a valid correlation function. Finally, "i(s; t) � N(0; �2";i)

is the measurement error which is assumed white-noise in space and time. The model parameter
set is 	 =
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and V = fV1; :::;Vcg. The estimation of 	 is based on the observed data matrix Y(S; T ), S =

fS1; :::;Sqg =
�
s1;1; :::; s1;n1 ; :::; sq;1; :::; sq;nq

	
� D, T = f1; :::; Tg, N = n1 + :::+ nq and is carried out

through the EM algorithm as discussed in Fassò and Cameletti (2009) and Fassò and Finazzi (2011).

3. Population risk assessment

Given a set of q pollutants, the population risk for the block B � D at time t related to the
i� th pollutant is de�ned here as

(2) ri (B; t) = P	̂ (yi (B; t) > Li) � d (B)

where yi (B; t) is the average concentration of the i�th pollutant over the block B, Li is a concentration
threshold and d (�) is the spatial population count distribution, which is here assumed to be time-
invariant and error-free. If the block B is small if compared to D, then (2) can be approximated
by

(3) ri (B; t) = P	̂ (yi (s
�; t) > Li) � d (B)

where yi (s�; t) is the pollutant concentration at site s�, with s� the centre of gravity of B.
When (3) is aggregated over space, the following risk indicator can be de�ned

(4) ri (t) =
X
B2D

ri (B; t)

If d (B) is available with the desired spatial resolution, the main problem is how to evaluate the
probability of exceedance P	̂ (yi (s

�; t) > Li). Now, the concentration of the i� th pollutant at site s�
and time t can be obtained by means of the plug-in approach as

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS029) p.4538



(5) ŷi (s
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where xi (s�; t) is a vector of covariates, ki is the i � th row of matrix K, zT (t) = E [z(t) j Y(S; T )]
is the output of the Kalman �lter, wTi (s

�; t) = E [wi(s
�; t) j Y(S; T )] is the estimated latent spatial

component and
n
�̂i; �̂i

o
� 	̂. The variance of ŷi (s�; t) is denoted by �̂2	̂ (s

�; t).

Although the distribution of ŷi (s�; t) can be assessed for each s� 2 D and t 2 T , the following
inequality holds in general:

(6) P	̂ (yi (s
�; t) > Li) 6= P	̂ (ŷi (s

�; t) > Li)

In order to estimate the lhs of (6) the following procedure is considered:

1. Considering the model in (1) and the dataset Y(S; T ), the estimate 	̂ of the model parameter
set is provided;

2. Let Y (S(�j); T ) be the data matrix with the j � th row removed and y(sj ; T ) the removed
row. The leave-one-out cross-validation technique is applied for each 1 � j � N by estimating
	̂(�j)from Y (S(�j); T ). The cross-validation residuals are obtained as e	̂(s; T ) = ŷ(sj ; T ) �
y(sj ; T ) where ŷ(sj ; T ) is given by (5) for each t 2 T .

3. The cross-validation residuals related to the i� th variable are studentized with respect to the
dynamic kriging variance �̂2

	̂
(s; t), namely:

(7) ~e	̂(s; t) =
e	̂(s; t)

�̂	̂(s; t)
; s 2 Si; t 2 T ;

4. The cumulative density function F	̂; ~E of all the studentized residuals
~E =

�
~e	̂(s; t) : s 2 Si; t 2 T

	
is obtained by kernel-smoothing.

5. For each block B and time t, the exceedance probability is evaluated as

(8) P	̂(yi(B; t) > Li) � 1� F	̂; ~E

 
Li � ŷi;	̂(s

�; t)

�̂	̂(s
�; t)

!

with ŷi;	̂(s
�; t) the kriged pollutant concentration under the estimated model with parameter

set 	̂.

Note that (7) is a studentization (Cook, 1982) in a broad sense since �̂	̂(s; t) is not an estimate
of the standard deviation of e	̂(s; t). However, �̂	̂(s; t) / �e(s; t) with �e(s; t) the standard deviation
of e	̂(s; t). The studentization is applied in order to homogenize the cross-validation residuals

~E which
are characterized by heteroscedasticity. Indeed, the exceedance probability in (8) is correctly evaluated
provided that the residuals ~E are white-noise in space and time.
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�̂pop �̂slp �̂t �̂sh �̂ws �̂blh �̂2"

NO2 0:464 �0:040 0:321 �0:473 �0:197 �0:220 0:367

O3 �0:090 �0:229 0:392 �0:297 0:216 0:166 0:274

PM10 0:121 0:224 0:289 �0:294 �0:084 �0:222 0:286

Table 1: Estimated � parameters and measurement error variance

4. Scottish air quality data

As an application, a subset of the Scottish air quality data for the year 2009 is considered. In
particular, the daily average concentrations of nitrogen dioxide (NO2), ozone (O3) and particulate
matter (PM10) are jointly modeled by means of (1) and the daily risk indicator (4) is evaluated.

The pollutant concentrations are measured and provided by the Scottish Automatic Urban Net-
work. The number of monitoring sites is 66 for NO2, 10 for O3 and 60 for PM10. The population count
distribution is provided by the Oak Ridge National Laboratory in the form of the LandScanTM dataset
(Bhaduri et al. 2007) and is available with the spatial resolution of 30" � 30" (nearly 1km � 1km).
The population count is also part of the covariate set which includes the meteorological covariates
temperature, sea level pressure, humidity, wind speed and boundary layer height.

Figure 1: Studentized residual kernel densities

The result of the EM algorithm is reported in Table 1 as far as the covariate coe¢ cients and
the measurement error variance concern while the rest of the estimated parameters are

Ĝ =

264 0:97 �0:02 �0:01
�0:17 0:87 0:11

0:27 0:13 0:58

375 ; �̂� =
264 0:006 0:013 0:011

0:013 0:063 �0:026
0:011 �0:026 0:170

375
�̂1 = 40:99

V̂1 =

264 1 �0:79 0:71

�0:79 1 �0:61
0:71 �0:61 1

375

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS029) p.4540



Figure 2: PM10 exceedance probability map for the �rst day of 2009 (lef) and log population count
distribution (right).

Note that p = 3 and c = 1 have been considered and that �̂1 is the estimated parameter of the
exponential correlation function � (h;�) = exp(�h=�), � 2 R+. The kernel smoothing densities of the
studentized residuals related to each pollutant are depicted in Figure (1).

The studentized residuals are used as basis to estimate the exceedance probability as discussed
in the previous section. As an example, the PM10 exceedance probability map with respect to the
concentration threshold LPM10 = 50�gm�3 for the �rst day of 2009 is showed on the left side of
Figure (2). The daily exceedance probability maps are used to evaluate the risk as de�ned in (3) and
the risk indicator (4). The daily risk indicator for PM10 is depicted in Figure (3). The risk indicator
can be directly interpreted as the number of people at risk with respect to the speci�c pollutant.

Figure 3: Scottish PM10 daily risk indicator for the year 2009 based on the threshold concentration
LPM10 = 50�gm

�3.
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5. Conclusion and future works

The Dynamic Coregionalization Model has been considered in order to jointly model and map the
pollutant concentration of three main airborne pollutants over Scotland. An approach based on
the studentization of the cross-validation residuals has been introduced as a way to estimate the
exceedance probability of a pollutant concentration threshold. The exceedance probability is used as
basis to estimate the population risk over space and time and an aggregate risk indicator has been
provided. In particular, the indicator has been used to evaluate the daily population risk with respect
to each pollutant.
Future works will consider the de�nition of a multi-pollutant risk indicator and the evaluation of
con�dence intervals on both the exceedance probability and the risk indicator.
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