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INTRODUCTION

Let Ti1, Ti2 be (possibly censored) event times for the two members of a matched pair, e.g. a

pair of twins. Inference for these event times needs to address the possible within-pair association and

a possible model with this property is the shared frailty model

λij(t) = Ziλ0(t) exp(βT Xij(t)), i = 1, . . . , n; j = 1, 2.

Here, λij(t) is the hazard function for subject (i, j), λ0(t) the baseline hazard common to all individuals,

and Xij(t) are observed covariates for subject (i, j). Finally, Zi is an unobserved random effect ("the

frailty"), which is shared between the two members of the pair. The random frailty creates the desired

within-pair association and it is assumed that (Ti1 ⊥ Ti2) | Zi.

Standard inference for this model requires independence between Zi and Xij(t). We study how viola-

tions of this assumption affects inference for the regression coefficients, β, and conclude that substantial

bias may occur.

We propose an alternative way of making inference for β by using a fixed-effects models for survival

in matched pairs. In this model,

λij(t) = λ0i(t) exp(βT Xij(t))

and each pair has its own baseline hazard, λ0i(t) which is eliminated from estimating equations via a

partial likelihood. Fitting this model to data generated from the frailty model provides consistent and

asymptotically normal estimates for β even when Xij(·) and Zi are dependent.

The methods are exemplified by studying how educational status affects the incidence of cancer in

Danish twins.

Notation and Data Generating Model

Define Nij(t) = I(Tij ∧Uij ≤ t, Tij ≥ Uij) where Uij is a censoring time assumed independent of

Tij . Furthermore, define the at-risk indicator Yij(t) = I(Tij ∧Uij ≥ t) and the filtration Ht =
∨n

i=1 Hi
t
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where

Hi
t = σ{Nij(s), Yij(s), Xij(s), Zi | j = 1, 2; 0 ≤ s ≤ t},

i.e. Ht is the filtration in which the unobserved Z1, . . . , Zn are "known". Correspondingly, let Ft be

the observed filtration, i.e.

Ft =
n
∨

i=1

F i
t =

n
∨

i=1

σ{Nij(s), Yij(s), Xij(s) | j = 1, 2; 0 ≤ s ≤ t}.

Assume that the Ht-intensity for Nij(t) is

λij(t) = ZiYij(t)λ0(t) exp(βT
0 Xij(t))(1)

where Z1, . . . , Zn are independent random variables parametrized by some real-valued parameter θ.

Since F i
t ⊆ Hi

t, the Ft-intensity for Nij(t) can be obtained via the Innovation Theorem (Andersen et

al. 1993, p.80) to be

λO
ij(t) = E[Zi | Ft−] · Yij(t)λ0(t) exp(βT

0 Xij(t)).

Note that E[Zi | Ft−] depends on β, λ0(t) and θ. For example, in the case where Zi ∼ Γ(θ, 1
θ ),

E[Zi | Ft−] =
θ + Ni·(t−)

θ +
∑2

j=1

∫ t−
0 Yij(s)λ0(s) exp(βT

0 Xij(s))ds
.

The Stratified Cox Model

In the stratified (or fixed-effects) Cox Model it is assumed that the Ft-intensity of the counting process

is not λO
ij(t) but

λ∗
ij(t) = Yij(t)λ0i(t) exp(βT

0 Xij(t)),(2)

cf. Holt and Prentice (1974). We claim that fitting this model to the data generated by the above

described model will give rise to unbiased estimates of β0, no matter whether the assumption of

independence between X and Z is met. This is due to the fact that the score equation arising from

the stratified Cox model will give rise to an unbiased estimating equation for data that are generated

from the frailty model as we will demonstrate in the following:

The log-partial Cox likelihood corresponding to (2) is

Cτ (β) =

n
∑

i=1

2
∑

j=1

∫ τ

0

[

log

(

exp(βT Xij(t))
∑2

j=1 Yij(t) exp(βT Xij(t))

)]

dNij(t)(3)

which gives rise to the score equation

Uτ (β) =
n

∑

i=1

2
∑

j=1

∫ τ

0

[

Xij(s) −
S1i(s, β)

S0i(s, β)

]

dNij(s) = 0(4)

where

S0i(t, β) =
2

∑

j=1

exp(βT Xij(t))Yij(t)

S1i(t, β) =
2

∑

j=1

Xij(t) exp(βT Xij(t))Yij(t),
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see e.g. Andersen et al. (1993, Example VII.2.13). Now, define the Ft-martingale MO
ij (t) = Nij(t) −

ΛO
ij(t) where ΛO

ij(t) =
∫ t
0 λO

ij(s)ds. The score function (4) can then be re-written as

Uτ (β) =
n

∑

i=1

2
∑

j=1

∫ τ

0

[

Xij(s) −
S1i(s, β)

S0i(s, β)

]

dMO
ij (s)(5)

+

∫ τ

0
λ0(s)

n
∑

i=1







E[Zi | Ft−]
2

∑

j=1

[

S1i(s, β0) −
S1i(s, β)

S0i(s, β)
· S0i(s, β0)

]







ds,(6)

which implies that

Uτ (β0) =
n

∑

i=1

2
∑

j=1

∫ τ

0

[

Xij(s) −
S1i(s, β0)

S0i(s, β0)

]

dMO
ij (s),

in particular that EUτ (β0) = 0 since MO
ij (t) is an Ft-martingale. Hence, the score equation in the

stratified Cox model gives rise to an unbiased estimate of β0 for data generated by the previously

described intensity, (1).

Define

S2i(t, β0) =
2

∑

j=1

Yij(t)Xij(t)
⊗2 exp(βT

Xij(t)),

Vi(t, β) =
S2i(s, β)

S0i(s, β)
−

(

S1i(s, β)

S0i(s, β)

)⊗2

.

Then the matrix of second order derivatives of the log-partial likelihood, Cτ (β), can be written as

−I(β) where

I(β) =
n

∑

i=1

2
∑

j=1

∫ τ

0
Vi(s, β)dNij(s)

Using the martingale central limit theorem, regularity conditions can be derived under which the

following holds for n → ∞:

- The probability that the equation Uτ (β) = 0 has a unique solution β̂ tends to 1

- β̂
p→ β0

- n−1/2(β̂ − β0)
D→ N (0,Σ−1

τ )

- supt∈[0,τ ] ‖n−1I(β̂) − Στ‖ p→ 0.

Here, Στ is defined as the limit in probability of n−1〈U(β)〉(τ) (see below).

The following is a sketch of the proof:

First, note that Uτ (β0) is an Ft-martingale and that the predictable variation process for Uτ (β0) can

be written as

〈U(β0)〉(τ) =
n

∑

i=1

∫ τ

0
λ0(s)E[Zi | Ft−] · S0i(s, β0)Vi(s, β0)ds.(7)

Now, using the Martingale CLT (Andersen et al., 1993 Theorem II.5.1), it can be shown that n−1/2U(β0)

converges in distribution to a normal distribution with mean zero and covariance matrix, Στ . So we

get (by means of a Taylor expansion argument) that

0 = U(β̂) ≈ U(β0) − I(β0)(β̂ − β0),
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i.e.

√
n(β̂ − β0) ≈

(

1

n
I(β0)

)−1

(
√

n)−1U(β0) ≈ Σ−1(
√

n)−1U(β0)

and therefore,
√

n(β̂ − β0) is asymptotically normal with mean zero and covariance matrix Σ−1.

Application: Education and breast cancer

We examine the effect of educational attainment on breast cancer by using both a frailty model

and a stratified Cox model. The data comprised 16.310 Danish female twins, 6268 monozogotic and

10042 dizogotic. Information was obtained from the Danish Twin Registry, administrative registers

in Statistics Denmark, and the Danish Cancer Registry. The population was followed from 1980-2006

(Madsen et al., 2011).

Educational status was dichotomized into primary and secondary/tertiary education, and breast

cancer was defined according to ICD-10 (C50) and ICD-7 (170). During the follow-up period, 518

events occurred and 19% of MZ and 27% of DZ twins were discordant on educational status. That

amounts to a total of 234 informative observations in the within-pair analysis. Unpaired and within-

pair analyses were compared in order to identify potential familial confounding. This is based on

the argument that if an unpaired analysis gives rise to an educational difference in the hazard of

breast cancer this might be due to unobserved confounding, for example as illustrated in Figure 1.

When performing an intrapair analysis, the estimate of educational status is within pairs, and hence
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Figure 1: DAG illustrating the confounding problem in the case of twin data. In the present example,

Xj denotes the educational status for twin j and Tj the waiting time to breast cancer

unobserved confounding is implicitly controlled for. However, as we have argued above, only in the

case where X and Z are independent, can the intrapair comparison be carried out by means of a frailty

model. Otherwise, the stratified Cox model should be used.

Consistent with the existing literature on social inequality in cancer, results from unpaired analy-

ses of both models showed an increased risk of breast cancer associated with a high education (HR=1.43

(CI-95% 1.03-1.97) for MZ twins. In contrast, the within-pair results. The Stratified Cox model dis-

played a massive attenuation of effect in the within-pair analysis: HR=0.82 (95%-CI 0.41-1.67)). For

the frailty model, the results of the within-pair analysis were essentially identical to those of the

unpaired analysis (HR=1.44 (CI-95% 1.06-1.96)).

Simulations

We generate data from the model

λij(t | Zi) = Zi · λ0(t) · exp(β · Xij), i = 1, . . . , n; j = 1, 2.

The Zi are drawn from a Γ-distribution and a log-normal distribution, respectively. In either case

the mean and the variance are set to 1. We generate two different scenarios for the covariate: in the

first case Xij ∈ {0, 1} is drawn from a Bernoulli distribution with probability p = 0.5 (and hence is
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Frailty Model Stratified Model

n β Dist Bias SD1 SD2 NA Bias SD1 SD2 NA

300 1.2 Gamma 0.005 0.142 0.141 0.001 0.006 0.222 0.218 0.000

75 1.2 Gamma -0.006 0.283 0.276 0.011 0.010 0.459 0.456 0.000

300 1.2 Log-Normal 0.002 0.127 0.128 0.000 0.011 0.215 0.220 0.000

75 1.2 Log-Normal 0.006 0.257 0.258 0.000 0.007 0.445 0.453 0.000

Table 1: Simulation results in the case where X and Z are independent: SD1=
√

1
1000

∑

j V̂ (β̂),

SD2=

√

V (β̂), NA=fraction not converged.

Frailty Model Stratified Model

n β Dist Bias SD1 SD2 NA Bias SD1 SD2 NA

300 1.2 Gamma 0.783 0.144 0.150 0.000 0.007 0.260 0.272 0.000

75 1.2 Gamma 0.772 0.285 0.280 0.004 0.015 0.549 0.554 0.000

300 1.2 Log-Normal 0.628 0.128 0.134 0.000 0.010 0.251 0.253 0.000

75 1.2 Log-Normal 0.631 0.258 0.264 0.000 0.031 0.528 0.539 0.002

Table 2: Simulation results in the case where X and Z are dependent, SD1=
√

1
1000

∑

j V̂ (β̂),

SD2=

√

V (β̂), NA=fraction not converged.

independent of Z), in the second case it is drawn from a Bernoulli distribution with a probability which

is determined by Zi to yield a correlation between X and Z which is approximately 0.7.

We simulate for two different values of n (e.g. number of twin pairs), n = 300, 75 and all scenarios

are replicated 1000 times. In each case, the value of β0 = log(1.2). In each run, the results from fitting

the correct frailty model (either Γ or log-norma), and a stratified Cox model are saved. The waiting

times, Tij , are censored by the variable Uij drawn from an exponential with a rate of 0.005 giving rise

to approximately 40− 45% of the twin pairs having the shortest waiting time censored (these pairs do

not contribute to the partial likelihood, cf. (3)) The simulations are run in R.
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