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A one-sided Exponential Weighted Moving Average (EWMA) control chart is introduced to

monitor the fraction p of nonconforming products in high yield processes. It is designed to detect

upward shifts of p screening the non-transformed geometric counts i.e. the number of conforming

products between two nonconforming ones. Its algorithmic function is theoretically established and

numerous performance measures are extracted using simulating methods. The efficiency and the per-

formance superiority of the proposed one-sided EWMA control chart is verified through comparisons

with a recently developed high yield chart, the simple two-sided EWMA control chart. Additionally,

an algorithm of optimally designing the chart is developed and an optimality table for the most usual

parameter values is adduced.

Introduction

Automation has prevailed in the modern industry leading inevitably to the emergence of high

yield processes. Examples of such processes can be easily found in the semiconductor and telecommu-

nications industries where the fraction p of nonconforming products is usually on the order of parts

-per-million (ppm). The traditional control charts, fail to detect in time excessive out-of-control shifts

at these processes and as Goh (1987) showed, they usually result in inappropriately high false alarm

rates. The demand to effectively monitor the increasingly many high yield processes led to the devel-

opment of control charts based on the geometric counts X, the count of products inspected until a

nonconforming product is encountered.

The geometric counts were firstly studied by Calvin (1987) and Nelson (1994) followed proposing

a control chart based on transforming the geometric count X to X1/3. Similar transformations of X

were studied by numerous other researchers. Recently Chang and Gan (2001) used the CUSUM statis-

tic applying it on the non-transformed observations obtained from geometric, binomial and Bernoulli

distribution. They concluded that the CUSUM control chart performs efficiently even for very small

values of p.

The latest evolution was achieved due to Yeh et al. (2008) who implemented the EWMA

control chart on geometric counts and demonstrated its superiority in detecting upward shifts in p (in

comparison with the aforementioned CUSUM) based on simulation results.

In this paper the work of Yeh et al. (2008) is extended and refined in an attempt to obtain

increased detection sensitivity. Following the technique of Shu et al. (2007), a new one-sided EWMA

control chart is developed for monitoring the upward shifts of the fraction of nonconforming products in

a high-yield process. Shu et al. (2007) were the first to conclude (studying normally distributed data),

that the one-sided EWMA chart lacks the serious inertia feature characterizing the traditional two-

sided EWMA charts especially when the EWMA statistic is far below the target before the occurrence

of a shift.

The basic idea on which the one-sided EWMA chart is based, is the accumulation of positive (or
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negative) deviations from the target only and the truncation of the negative (or positive, correspond-

ingly) deviations from the target to zero in the computation of each EWMA statistic. It should be

noted that the use of the one-sided control chart assumes a known shift direction. In the context of the

present paper, only the increasing shifts in the fraction of nonconforming products (from p0 to p > p0)

are examined which lead to decreasing shifts of the geometric count X. Thus, the proposed control

chart will be called hereafter lower geometric EWMA. Regarding the chart’s design, the maintenance

of a specified false alarm rate is ensured through appropriate adjustment of the chart’s control limits.

The definition of these control limits, the examination of the truncated geometric variable X and the

theoretical foundation of the one-sided EWMA statistic are presented in section 2. In section 3 the

optimal design parameters of the new control chart are extracted and its performance is investigated

with the help of appropriate comparisons with the recently developed two-sided EWMA control, chart

of Yeh et al. (2008).

One-sided EWMA control charts

In this section the work of Shu et al. (2007) is extended to the case of geometrically distributed

data and the lower geometric EWMA control chart is theoretically founded. Consider an attribute

process where each product can be conforming or nonconforming. Let X denote the number of

products monitored until a nonconforming one is encountered. If the probability of each product be

nonconforming is p, then the distribution of X is geometric with parameter p i.e. with probability

function P (X = x) = (1− p)x−1p, x = 1, 2, .... In this case the expected value and the variance of X,

are E(X) = µ = 1/p and V ar(X) = σ2
X = (1− p)/p2 correspondingly.

A high yield production process is considered to be in-control with parameter p0 when there are

only random causes for its underlying variability. In this case the values Xt of the variable X randomly

fluctuate around their mean value E(Xt) = µ0. When there are significant external, assignable causes

the process is considered to be out-of-control at a quality level p. In that case the deviation of Xt from

µ0 is considered significant and action should be taken to secure the proper function of the process.

As it is already mentioned, in this paper only the non-random increases in the fraction of

nonconforming products are examined leading the geometric counts Xt to decrease. Following the

same methodology developed by Shu et al. (2007), only the observations Xt below the mean µ0 are

accumulated. Each geometric count Xt is transformed into

(1) X−
t = min{µ0, Xt} = µ0 −max{0, µ0 −Xt}

It is easily extracted that the mean of the new variable X−
t is

(2) E(X−
t ) = µ0 −

µ0∑
t=0

(µ0 −Xt)f(µ0 −Xt) =
1− 2p− (1− p)

1+p
p

p(1− p)

where f(µ0 −Xt) is the probability density function (pdf) of µ0 −Xt.

The quantity E(X−2
t ) is given by the following formula

E(X−2
t ) = E(µ2

0 +max2{0, µ0 −Xt} − 2µ0max{0, µ0 −Xt})

=
p2 − 4p+ 2 + (1− p)1/p(−p2 + 5p− 4)

p2(1− p)
(3)

Then the variance of the X−
t is calculated considering equations (2) and (3)

(4) V ar(X−
t ) = σ2

X−
t
= E(X−2

t )− E2(X−2
t )
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The traditional EWMA control statistic for t = 1, 2, ..., is given by the following formula

(5) G−
t = λX−

t + (1− λ)G−
t−1

where 0 < λ < 1 is a pre-determined smoothing parameter and G0 = µ0. It can be proved that the

EWMA statistic can also be written

(6) G−
t =

t−1∑
j=0

λ(1− λ)jX−
t−j + (1− λ)tG0

From (6) it is deduced that the mean and the variance of the EWMA statistic are respectively (see

Montgomery, 2005)

(7) E(G−
t ) = E(X−

t )
t−1∑
j=0

λ(1− λ)j = E(X−
t )(1− (1− λ)t) + (1− λ)tµ0

and

(8) V ar(G−
t ) = V ar(X−

t )

t−1∑
j=0

λ2(1− λ)2j = σ2
X−

t

λ

2− λ
(1− (1− λ)2t)

Then, according to the EWMA control chart technique, the lower control limit (LCL) below which a

signal is produced is given by the formula replacing (7) and (8)

(9) LCL = E(G−
t )− L

√
V ar(G−

t )

where L is a pre-determined constant multiplier used to adjust (in combination with λ) the in-control

performance of the EWMA control chart. Note that the term (1− λ)2t involved in equations (7)-(9)

approaches zero as t gets larger. Thus, after several time periods have passed, the LCL will approach

a steady-state value (see Montgomery, 2005) given by

(10) LCL = E(X−
t )− L

√
λ

2− λ
σX−

t

For reasons of simplicity, the limiting form of the term (1 − λ)2t will be considered equal to zero

throughout this paper.

Performance evaluation and comparison

In this paragraph the performance of the proposed control chart is examined and compared to

the two-sided EWMA control chart developed by Yeh (2008). The efficiency of the control charts

is traditionally measured with the average run length (ARL) i.e. the number of Xs until a shift is

detected. However, in this paper where Xs represent geometric counts, the ARL does not compre-

hensively explain in what product the shift is detected. Thus, the alternative performance measure of

ANIS (average number of items until shift) is used. Two types of ANIS can be considered: the ANIS0
describing the average number of items until a shift is detected when the process is in-control, and the

ANIS1 declaring the average number of items intervened from the item where the shift has occurred

until the item where it is detected when the process is considered out-of-control. For both forms of

ANIS the following relationship with the ARL evidently holds
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(11) ANIS = E{number of X} · E{length of X} = ARL · 1
p

Note that throughout this paper only zero-state scenarios are considered meaning that when the

monitoring begins, the process is considered to be exactly in the center of the in-control region when

ANIS0 is concerned and in an out-of-control state when ANIS1 is concerned. Both forms of ANIS are

calculated through monte carlo simulations involving 250,000 replications through an optimization

procedure: firstly, the desired ANIS0, the smoothing parameter λ and the shift level that is interested

to be quickly detected, are specified. Then the parameter L is appropriately chosen to minimize the

ANIS1 at the specified shift while in the same time satisfies the ANIS0. This optimization design was

implemented both on the lower and the two-sided EWMA control chart of Yeh et al. (2008) and some

representative results are cited in table 1.

More specifically, table 1 presents the out-of-control ANIS1 of the two control charts when the

in-control ANIS0 is 50,000 and 70,000. The initially in-control values of p0 take the values 0.0001,

0.0002 and 0.0003 and various upward shifts are examined. Two different values of the smoothing

parameter λ were chosen, λ = 0.1 and 0.5. For each chart and for given λ and ANIS0, the optimum

parameter L is calculated to minimize the ANIS0 considering a shift at p = 0.0005.

A close examination of the table 1 reveals a similar optimality behavior of the two charts for both

examined values of λ. More specifically, the optimal L slightly increases with the in-control fraction

p0 of non-conforming products. For example, for the case of λ = 0.1, when the ANIS0 = 70, 000, the

optimum value of L for the detection of a shift from p0 = 0.0001 to p = 0.0002 (100% increase in

quality level) is 0.214 for the lower EWMA control chart and 0.250 for the two-sided chart. On the

other hand the optimum value of L for the detection of a shift from p0 = 0.0003 to p = 0.0006 (also

100% increase in quality level) is 0.806 and 0.765 correspondingly. The same holds for the case of

λ = 0.5.

Table 1 also facilitates the immediate comparison of the two control charts for the detection of

the same shifts and under their optimum parameter λ. For every examined shift the lower geometric

EWMA control chart is more sensitive as its ANIS1 is by far smaller than the corresponding ANIS1
of the two-sided EWMA control chart.

Conclusion

The evolution of the modern manufacturing techniques has led inevitably to the emergence of

increasingly many high yield processes and the demand for the development of extra sensitive control

charts. In this attempt a new one-sided EWMA control chart is proposed for monitoring geometric

counts. The comparison of the new control chart with the older two sided EWMA control proposed

by Yeh et al. (2008) chart reveals its superior sensitivity. Undoubtedly, extended research could be

conducted in the future on the proposed control chart. For example, the behavior of the chart could

be tested under the scenario of fast initial response (FIR). Moreover more work has to be done to

extract its performance measures with analytical techniques like Shu et al. (2007) proposed based on

Markov modelling.
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