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The jackknife is a popular method in survey sampling which is widely used for standard error

estimation (e.g. Shao & Tu (1995) and Wolter (2007)). The applicability and theoretical properties

of jackknife variance estimators under unequal probabilities without-replacement sampling have been

studied to a limited extent. Some examples are given by Campbell (1980), Berger & Skinner (2005),

Berger & Rao (2006) and Berger (2007), who proposed jackknife variance estimators for functions of

Hájek (1971) point estimators.

We propose two generalised jackknife variance estimators suitable for functions of Horvitz &

Thompson (1952) point estimators. Regularity conditions under which the proposed estimators are

design-consistent are also provided. These estimators are defined for without-replacement unequal-

probability sampling designs and they naturally include finite population corrections. The proposed

estimators are compared with the Campbell (1980) jackknife variance estimator for a ratio.

The class of point estimators

Let U = {1, . . . , k, l, . . . , N} denote a finite population and let s = {1, . . . , n} denote a sample

whose elements are randomly selected with an unequal probability sampling design without replacement,

s ⊆ U , n ≤ N . Assume that we are interested in the population parameter θ = h(t1, . . . , tq, . . . , tQ)

which is a function of population totals fromQ survey variables, where h(·) is a smooth and differentiable

function (e.g. Shao & Tu (1995), Chapter 2), tq =
∑
k∈U yqk with yqk denoting the measurement of the

q-th variable for unit k ∈ U , q = 1, . . . , Q. Further, assume we estimate θ by the substitution point

estimator θ̂ = h(t̂1, . . . , t̂q, . . . , t̂Q) where t̂q =
∑
k∈swkyqk is the Horvitz & Thompson (1952) point

estimator of tq, with survey weights wk = π−1k where πk denotes the inclusion probability of unit k,

πk > 0, ∀k ∈ U and πkl denotes the joint inclusion probabilities of units k and l, πkl > 0,∀k, l ∈ U .

The proposed variance estimator

We propose to estimate the variance of θ̂ by the jackknife variance estimator

vJHT =
∑∑

(k,l)∈s
Dkl νk νl,(1)

with

νk = wk(θ̂ − θ̂(k)),(2)

where Dkl = π−1kl {πkl − πkπl}, and θ̂(k) = h(t̂
(k)
1 , . . . , t̂

(k)
q , . . . , t̂

(k)
Q ) with

t̂(k)q =
∑

(l 6=k)∈s
wlyql + (wk − 1)yqk.(3)
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Alternatively, if the sampling design is of fixed sample size, we propose to estimate var(θ̂) by

vJSY G = − 1

2

∑∑
(k,l)∈s

Dkl (νk − νl)2,(4)

which is always positive provided Dkl < 0 (e.g. Chao (1982)).

For the simplest case where θ̂ = t̂ =
∑
k∈swkyk, (2) and (3) imply νk = wk(t̂ − t̂(k)) = wk(t̂ −

(t̂ − yk)) = wkyk. Hence, the proposed jackknifes (1) and (4) reduce, respectively, to the Horvitz &

Thompson (1952), and the Sen (1953) and Yates & Grundy (1953) unbiased estimators of var(t̂).

Design-consistency

The design-consistency is set under the Isaki and Fuller (1982) asymptotic framework. Accordingly,

consider a sequence of nested populations of size {Nt : 0 < Nt < Nt+1, ∀t}. Consider also a sequence of

(non-necessarily nested) samples of size {nt : nt < nt+1;nt < Nt,∀t}. Thus, t → ∞ implies Nt → ∞
and nt → ∞, with constant f = nt/Nt. In what follows, the index t is dropped to simplify the

notation.

In asymptotic studies, it is convenient to work with means instead of totals. Hence, re-define

the weights wk as w̃k = wk/N,∀k ∈ U , such that t̂q becomes the mean estimator µ̃q =
∑
k∈s w̃kyqk

for the population mean µq = tq/N , q = 1, . . . , Q. Now, recall Results 2.8.1 and 2.8.2 from Särndal

et al. (1992) and denote by ΣHT =
∑∑

(k,l)∈UDklπklw̃kw̃lykyTl , Σ̂HT =
∑∑

(k,l)∈sDklw̃kw̃lykyTl ,

ΣSY G = −1
2

∑∑
(k,l)∈UDklπkl{w̃kyk − w̃lyl}{w̃kyk − w̃lyl}T and Σ̂SY G = −1

2

∑∑
(k,l)∈sDkl{w̃kyk −

w̃lyl}{w̃kyk − w̃lyl}T the multivariate Horvitz-Thompson and Sen-Yates-Grundy population and

sample variances of the estimator µ̃ = (µ̃1, . . . , µ̃Q)T for the population parameter µ = (µ1, . . . , µQ)T ,

with πkl > 0,∀k, l ∈ U where Dkl = π−1kl {πkl−πkπl} and yk = (y1k, . . . , yQk)
T . Consider the following

regularity conditions:

(a) vL/VL →p 1, VL 6= 0 with VL = ∇(µ)TΣHT∇(µ), vL = ∇(µ̃)T Σ̂HT∇(µ̃) (for fixed sample size

designs: VL = ∇(µ)TΣSY G∇(µ), vL = ∇(µ̃)T Σ̂SY G∇(µ̃)), where ∇(x) is the gradient of h(·)
at x ∈ <Q, ∇(x) = (∂h(µ)/∂µ1, . . . , ∂h(µ)/∂µQ)Tµ=x, h(·) is continuous and differentiable at µ.

(b) lim inf {n VL} > 0.

(c) n−1
∑
k∈s w̃

τ
k ‖yk‖

τ = Op(n−τ ),∀τ ≥ 2, with ‖A‖ = tr(ATA)1/2 the Euclidean norm.

(d) Gs = n−β
∑∑

(k 6=l)∈s(D−kl)2 = Op(1), with 0 ≤ β < 1, D−kl = −Dkl if Dkl < 0, 0 otherwise.

(e) Hs = n−β
∑∑

(k 6=l)∈s(D+
kl)

2 = Op(1), with 0 ≤ β < 1, D+
kl = Dkl if Dkl ≥ 0, 0 otherwise.

(f) ∇(x) is Lipschitz (Hölder) continuous of order δ, i.e. ‖∇(x1)−∇(x2)‖ ≤ λ ‖x1 − x2‖δ, λ > 0

constant, β/2 < δ ≤ 1, x1 and x2 in neighbourhood of µ (e.g. Shao and Tu (1995), page 43).

(g) ‖∇(µ̃)‖ = Op(1).

Condition (a) sets the consistency of the linearisation variance estimator vL for VL (Särndal et al.

(1992), Secs. 5.5 & 5.7)). Conditions (b) and (c) are typical (Shao & Tu (1995), pp. 258-260): (b)

implies that VL decreases with rate n−1 and (c) is a Lyapunov condition. Conditions (d) and (e) are

mild requirements on the design, and (f) and (g) are usual smoothness conditions for jackknifes.

Theorem 1. For fixed sample size designs, if regularity conditions (a)-(g) hold, then the

variance estimator vJSY G in (4) is asymptotically design-consistent for the approximate linearised

variance VL 6= 0, i.e. vJSY G/VL →p 1.

Corollary 1. If regularity conditions (a)-(g) hold, then the variance estimator vJHT in (1) is

asymptotically design-consistent for the approximate linearised variance VL 6= 0, i.e. vJHT /VL →p 1.
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Corollary 2. From Theorem 1, by Slutsky’s theorem and asymptotic Normality of θ̂ for θ,

it follows {vJHT }−1/2(θ̂ − θ) →dN(0, 1) and {vJSY G}−1/2(θ̂ − θ) →dN(0, 1). Thus, both jackknife

variance estimators, vJHT and vJSY G in (1) and (4), allow valid confidence intervals of θ̂ for θ.

Example: The ratio

We now illustrate how the proposed estimators works for the ratio point estimator. Let the

parameter of interest be R = ty/tx = µy/µx, where ty =
∑
k∈U yk and tx =

∑
k∈U xk are the population

totals of the variables y and x, and µy = ty/N and µx = tx/N are population means. Now, assume

that R is estimated with the point estimator R̂ =
∑
k∈swkyk/

∑
k∈swkxk, which can be thought either

as a function of Horvitz-Thompson (1952) total estimators

R̂ = t̂y/t̂x,(5)

where t̂y =
∑
k∈swkyk, t̂x =

∑
k∈swkxk, or as a function of Hájek (1971) mean estimators

R̂ = µ̆y/µ̆x,(6)

where µ̆y = t̂y/N̂ and µ̆x = t̂x/N̂ , with N̂ =
∑
k∈swk. Hence, the proposed variance estimator

vJHT in (1) and the Campbell (1980) jackknife variance estimator, below in (7), are comparable as

they estimate the variance of the same point estimator. From Berger & Skinner (2005), Campbell’s

estimator is defined as

vJC =
∑∑

(k,l)∈s
Dkl εk εl,(7)

where εk = (1 − wk/N̂)(θ̆ − θ̆(k)) and θ̆ = g(µ̆1, . . . , µ̆p, . . . , µ̆P ) is a function of Hájek (1971) mean

estimators from P variables with µ̆p = t̂p/N̂ , and where θ̆(k) = g(µ̆
(k)
1 , . . . , µ̆

(k)
p , . . . , µ̆

(k)
P ) has the same

functional form as θ̆ but using µ̆
(k)
p = (t̂p − wkyk)/(N̂ − wk) instead of µ̆p.

It is well known (e.g. Särndal et al. (1992), Result 5.6.2), that the approximate linearised

variance of R̂ is given by VL =
∑∑

(k,l)∈UDklπklukul where uk = wk(yk −Rxk)/tx. Besides, it is also

known that an unbiased estimator of VL is given by vL =
∑∑

(k,l)∈sDklǔkǔl, where

ǔk =
wk

t̂x
(yk − R̂xk).(8)

Henceforth, the quantities νk of the proposed jackknife variance estimator vJHT in (1) are given by

νk = wk

(
R̂− t̂y − yk

t̂x − xk

)
,

=
wk

t̂x
(yk − R̂xk)

(
t̂x

t̂x − xk

)
,

= ǔk

(
t̂x

t̂x − xk

)
,(9)

whereas the quantities εk of Campbell’s jackknife vJC in (7) are given by

εk =

(
1− wk

N̂

)(
R̂− t̂y − wkyk

t̂x − wkxk

)
,

=
wk

t̂x
(yk − R̂xk)

(
t̂x

t̂x − wkxk

)(
N̂ − wk
N̂

)
,

= ǔk

(
t̂x

t̂x − wkxk

)(
N̂ − wk
N̂

)
.(10)
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It can clearly be seen from (9) that νk
.
= ǔk if (t̂x − xk)−1t̂x

.
= 1. On the other hand, from (10) we

have that εk
.
= ǔk if N̂−1(N̂ − wk)

.
= 1 and if (t̂x − wkxk)−1t̂x

.
= 1.

Thus, the proposed jackknife estimator is a suitable approximation of the Linearisation variance

estimator vL. It is more accurate than Campbell’s jackknife as (9) is less sensitive to (highly-skewed)

weights than (10).
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