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1 Introduction

Multi-array data analysis is now rapidly developing and being applied successfully in various applica-

tion fields. A multi-array datum is named a tensor. The complexity of a tensor is captured by ”tensor

rank” and the model complexity is captured by ”maximal rank”. Data analysts seek the simplest

model and so the rank determination is of a vital interest for data analysis. In the determination of a

maximal rank Atkinson et al. [1, 2] claimed that the maximal rank of n×n× p tensors is less than or

equal to 2n−1. In Sumi et al. [16] we proved Atkinson and Stephens’s claim over the complex number

filed without assumption and over the real number field except a class of tensors. Thus we reached to

some exeptional tensors; absolutely nonsingular tensors. Nonexistence of any absolutely nonsingular

tensor implies that Atkinson and Stephens’s bound for the maximal rank holds. Therefore, existence

or nonexistence of absolutely nonsingular tensors is directly related to the claim. Sakata et al. [14]

studied the existence problem for the 4 × 4 × 3 tensors. In this paper we will review briefly topics

mainly around absolutely nonsingular tensors for 6× 6× 3 case from various mathematical disciplines

and several new results will be given.

2 Basics of the problem

First note that throughout the paper we treat real tensors.

Definition 2.1 An n × n × p tensor T = (A1;A2; . . . ;Ap) is said to be absolutely nonsingular if∑p
i=1 xiAi are nonsingular for all x = (x1, . . . . , xp) ̸= 0.

Definition 2.2 For an n × n × p tensor T = (A1;A2; · · · ;Ap), a homogeneous polynomial of degree

n in x,

fT (x) = det(

p∑
i=1

xiAi),

is called the determinant polynomial of the tensor T , (see Sakata et al. [14]).
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Now the following is obvious.

Proposition 2.3 The absolutely nonsingularity of T = (A1;A2; · · · ;Ap) is equivalent to the nonzero

property of the determinant polynomial fT (x), where the nonzero property means that fT (x) does not

vanish for all x ̸= 0.

Thus, the absolute nonsingularity links to the problem of the positivity of a homogeneous polynomial.

The mathematical field of this topic is known as the Hilbert’s 17th problem. Various methods are

applicable for this problem. In Sakata et al. [14] we studied 4× 4× 3 absolutely nonsingular tensors

by Polya’s theorem, which is famous in this field (see Loera and Santos [7]).

3 Reduction to an eigenvalue problem

After a definition we give another characterization of absolutely nonsingular tensors as a matrix

eigenvalue problem. Note that a component matrix of a tensor is called a slice.

Definition 3.1 Let IGL(n,R) be the subset set of n×n nonsingular real matrices which have no real

eigenvalue.

Theorem 3.2 T = (A1; . . . ;Ap) be an n× n× p tensor without singular slices. Then, T is absolutely

nonsingular if and only if x2A
−1
1 A2 + · · ·+ xpA

−1Ap belong to IGL(n,R) for all (x2, . . . , xp) ̸= 0.

Proof First we prove the if part. Since fT (x) = |A1||x1I + x2A
−1
1 A2 + · · · + A−1

1 Ap|, if x1 = 0

and (x2, . . . , xp) ̸= 0, x2A
−1
1 A2 + · · · + A−1

1 Ap should not have zero eigenvalue. On the other hand,

if x1 ̸= 0 and (x2, . . . , xp) = 0, fT (x) ̸= 0 without any condition. Furthermore, if x1 ̸= 0 and

(x2, . . . , xp) ̸= 0, x2A
−1
1 A2 + · · · + xpA

−1
1 Ap should not have any other real eigenvalue than zero.

Thus, that x2A
−1
1 A2 + · · · + xpA

−1
1 Ap has no real eigenvalues for (x2, . . . , xp) ̸= 0 is the necessary

condition. Conversely, it is easy to see fT (x) does not vanish for all x ̸= 0 if the condition is satified.

This proves the assertion.

Furthermore we show that the set of absolutely nonsingular tensors has the following algebraic struc-

ture.

Definition 3.3 For two nonsingular matrices A and B, we define the product ⊙ by

A⊙B = A−1B.

Definition 3.4 A linear subspace S in IGL(n,R) is said to be almost closed in IGL(n,R) with respect

to the product ⊙ if S is a linear space and for A,B ∈ S, if A ⊙ B is not a constant multiple of the

identity matrix, A⊙B ∈ IGL(n,R).

Then we have

Theorem 3.5 For an absolutely nonsingular tensor T = (A1; · · · ;Ap), let

AT = {A|A =

p∑
i=2

xiA
−1
1 Ai, (x2, . . . , xp) ̸= 0}.

Then AT is an almost closed linear subspace in IGL(n,R) with respect to the product ⊙.

Proof Let A =
∑p

i=2 xiA
−1
1 Ai and B =

∑p
j=2 yjA

−1
1 Aj . Since T is absolutely nonsingular, both

A and B must be elements of IGL(n,R) by Theorem 3.2. If A−1B has a real eigenvalue, say x0,

|x0I + A−1B| = 0. Hence, |x0A+ B| = |
∑p

i=2(x0xj + yj)Aj | = 0. Since T is absolutely nonsingular,

this means that x0xj + yj = 0, j = 2, . . . , p. Then, A−1B = x0I. Thus, if A−1B is not a constant

multiple of the identity matrix, A−1B has no real eigenvalue and therefore it belongs IGL(n,R). This
proves the assertion.
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Remark 3.6 The closedness of S in IGL(n,R) with respect to ⊙ does not means that S itself is closed

under the product ⊙. How is this algebraic structure connected to the existence problem of absolutely

nonsingular tensors is not known at the moment.

4 Probability of absolutely nonsingular tensors

In this section we give a simple upper bound of the probability of a tensor being nonsingular. For this

we prove a lemma.

Lemma 4.1 Let T = (A1;A2; · · · ;Ap) be a 2n × 2n × p tensor. If there is a pair (Ai, Aj) such that

|Ai||Aj | < 0, then T is not absolutely nonsingular.

Proof Let fT (x) = det

(
p∑

i=1

xiAi

)
be the determinant polynomial of T . Without loss of generality

let |A1| > 0 and |Ap| < 0. Then, setting xi = tp−i, i = 1, 2, . . . , p,

fT (x) = gT (t) = |A1|det

(
tp−1I2n +

p∑
i=2

tp−iA−1
1 Ai

)
.

The function gT (t) of t has the form

gT (t) = t2n(p−1) + · · ·+ |A−1
1 Ap| with |A−1

1 Ap| < 0.

Since gT (t) is positive for a large |t| and gT (0) = |A−1
1 Ap| < 0, gT (t) = 0 has at least one real solution,

and this implies that T is not absolutely nonsingular.

Remark 4.2 The function det() divides the space of 2n×2n matrices into two components of det() > 0

and det() < 0 with the boundary det() = 0. Lemma 4.1 states that all the slices of an absolutely

nonsingular tensor must be taken from the same component.

Remark 4.3 From the form of fT (x) given in Lemma 4.1 a numerically easily checkable necessary

condition of the non-zero property is derived. That is, in order that T is absolutely nonsingular it is

necessarily that the extended matrix
0 0 · · · −A−1

1 Ap

I 0 · · · −A−1
1 Ap−1

...
. . . · · ·

...

0 · · · I −A−1
1 A2


has no real eigenvalue.

From Lemma 4.1, we have

Theorem 4.4 Let T be an randomly generated tensor where all elements of Ai, i = 1, . . . , p are

independently and uniformly distributed in an interval [−d, d]. Then

P{T is absolutely nonsingular} <
1

2p−1
.

Proof The probability that all |Ai| have the same sign is
1

2p−1
. By Lemma 4.1 the assertion

follows.

The following gives another look of absolute nonsingularity.
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Proposition 4.5 Let T = (A1; · · · ;Ap) have the property that Ai are nonsingular and |Ai| have the

same sign σ(− or +). Then T is absolutely nonsingular if and only if
∑p

j xjAj have the sign σ for all

x ̸= 0.

Remark 4.6 The above is merely a trivial rephrase of the original non-zero property. However, we

would like to stress that for absolutely nonsingular tensors, any linear combination of slices does not

change the sign of the determinant, which is a quite interesting property.

5 How to check the absolutely non-singularity

For searching absolutely nonsingular tensors we need a method that enable us to check whether a

given tensor is absolutely nonsingular or not. As we have seen, this is a problem of positivity of

multivariate polynomials. In fact, there are various methods for this purpose as are given below(see

[6, 10, 8, 12, 18]).

(1) Polya’s method( necessarily and sufficient).

(2) Solving polynomial equations (necessarily and sufficient).

(3) A sum of squares approximation( sufficient).

(4) Moment method (sufficient).

(5) Positivestellensatz (necessrily and sufficient).

Polya’s method of (1) states that a homogeneous polynomial p(x) is positive on the simplex ∆ =

{x|
∑p

i=1 = 1, xi ≥ 0} if and only if (x1+ · · ·+xp)
rp(x) has all nonnegative coefficients for some large

integer r. This may be problematic for large r.

The method (2) seeks the minimal value and shows that it is positive. For that it solves polynomial

equations ∂fT
∂s (s, t) = 0, ∂fT∂t (s, t) = 0 and checks the positivity of fT (x) at the solutions. The equations

have only two variables and comparatively easily solved. However, in general, the solution is not zero

dimensional( the number of solutions is not finite). For solving polynomial equations, we usually need

some algebraic soft, for example, Risa Asir (see [11, 13]). However, recently, Dreesen and Moor ([3])

developed a theory solving polynomial equations by a simple linear algebra and the implementation

by R is undergoing by us.

The sum of squares method of (3) is a method to seek the minimum of a polynomial fT (x) by seeking

a maximal constant c such that fT (x) − c becomes a sum of squares of polynomials. This is solved

by Semi Definite Programming method. Note that R has a package of SDP. However this method is

problematic for positive polynomials which cannot be expressed as a sum of squares of polynomials.

It is known that such phenomena occur for n ≥ 6.

The moment method (4) for the positivity problem of polynomials are now being developed, for

example, by Lasserre [5].

Positivestellensatz of (5) states the conditions that a semi-algebraic is void. For example, to show

fT (x, y) > 0 on the set of {x|∂fT∂x (x, y) = 0, ∂fT∂y (x, y) = 0} it suffices to show that the set {x|fT (x, y) ≤
0, ∂fT∂x (x, y) = 0, ∂fT∂y (x, y) = 0} is void. There are several versions of Positivestellensatz. However, any

algorithm to check the conditions seems not to be established fully.

6 Construction of absolutely nonsingular tensors

6.1 Constructible case

Here we give a method to construct 2n×2n×3 absolutely nonsingular tensors in the case of existence

of some pair of skew-symmetric matrices.

Definition 6.1 Two matrices H1 and H2 is said to be independent if |sH1+tH2| ̸= 0 for (s, t) ̸= (0, 0).
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Theorem 6.2 Let A be any nonsingular 2n × 2n matrix. If H1 and H2 be two nonsingular skew-

symmetric matrices such that H1 and H2 is independent, then a tensor T = (A;AH1;AH2) is an

absolutely nonsingular tensor.

Proof Let fT (x, y, z) = det(xA + yAH1 + zAH2) be the determinant polynomial of T . First we

check the case of x = 0. Then, we have that fT (0, y, z) = |yAH1 + zAH2| = |A||yH1 + zH2| ̸= 0 for

all (y, z) ̸= (0, 0) by independence assumption. Second we check the case of x ̸= 0. We have that

fT (x, y, z) = |xA+yAH1+zAH2| = |A||xI+(yH1+zH2)|. Since yH1+zH2 is a skew-symmetric matrix,

|yH1+ zH2| ̸= 0 implies that yH1+ zH2 has no real eigenvalue. Therefore, |A||xI +(yH1+ zH2)| ̸= 0

for all x ̸= 0 and for all (y, z). This proves the assertion of Theorem 6.2.

The next theorem gives a slightly different family of absolutely nonsingular tensors with 3 slices.

Theorem 6.3 Let H1 and H2 be two nonsingular independent skew-symmetric matrices. For a posi-

tive definite or negative definite symmetric matrix S, let A1 = S +H1 and A2 = S +H2. Then, for

any nonsingular matrix A, T = (A;AA1;AA2) is absolutely nonsingular.

Proof It suffices to show that xA1 + yA2 has no real eigenvalue for all (x, y) ̸= (0, 0). Note that

|xA1 + yA2| = |(x+ y)S + (xH1 + yH2)|

If x = −y ̸= 0, |xH1 + yH2| ̸= 0 by independence of H1 and H2. For the either cases of x > −y or

x < −y, setting s =
x

x+ y
and t =

y

x+ y
, it suffices to show that |S+sH1+tH2| ̸= 0. Then, there is an

orthogonal matrix U and a positive definite diagonal matrix D such that |S + sH1 + tH2| = |D||δI +
D−1/2U(sH1 + tH2)U

tD−1/2| where δ = ±1. Since D−1/2U(xH1 + yH2)U
tD−1/2 is a nonsingular

skew-symmetric matrix, it has no real eigenvalue, and |δI +D−1/2U(xH1 + yH2)U
tD−1/2| ̸= 0 for all

(s, t). This proves the assertion.

6.2 Why 6× 6× 3 absolutely nonsingular tensors are difficult to construct

For searching absolutely nonsingular tensors by using Theorem 6.2, it suffices to seek a pair of skew-

symmetric matrices H1 and H2 such that yH1 + zH2 is independent. For the case of n = 4, we can

find such pair of H1 and H2 as the elements of quaternion skew-field. However, this cannot happen

for n = 4k + 2, stated in Theorem 6.4 below. This is one reason why it is difficult to find absolutely

nonsingular 6× 6× 3 tensors.

Theorem 6.4 Let H1 and H2 be two skew-symmetric matrices of size (4k + 2)× (4k + 2). Then H1

and H2 can not be independent.

Proof Consider the polynomial with a variable t, p(t) = |H1 + tH2|. Since H1 + tH2 is a skew-

symmetric matrix, it’s determinant is a square of a polynomial Pfaff(t), which is called the Pfaffian of

H1 + tH2. That is, p(t) = Pfaff(t)2. Since the degree of p(t) is 4k+ 2, the degree of Pfaff(t) is 2k+ 1.

Thus, Pfaff(t) vanishes in at least one real t. This proves the assertion.

6.3 Nonexistence Conjecture

The problem is how to extend the assertion of Theorem 6.4 for a general pair (A,B). That is,

Conjecture 6.5 Let n = 4k+ 2, and let A and B be (4k+ 2)× (4k+ 2) matrices such that each has

no real eigenvalue. Then x0A+ y0B has at least one real eigenvalue for some (x0, y0) ̸= (0, 0).
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The following supports the conjecture. The problem is to show that for any pair of (4k+2)× (4k+2)

matrices A and B which have no real eigenvale, |xI + yA + zB| ̸= 0 for all (y, z) ̸= (0, 0). By

regularizations we can treat the problem by the following two methods:

(1) To show that both (1−s)A+sB and (1−s)(−A)+sB have no real eigenvalues for some 0 ≤ s ≤ 1.

or

(2) To show that all of |(1−x)I+(1+x)(1−s)A+(1+x)sB| = 0,|(1−x)I+(1+x)(1−s)A+(1+x)sB| = 0,

|(1− x)I + (1 + x)(1− s)A+ (1 + x)sB| = 0, and |(1− x)I + (1 + x)(1− s)A+ (1 + x)sB| = 0 have

no solution (x, t) in the rectangle [−1, 1] × [−1, 1], and both (1 − s)A + sB and (1 − s)(−A) + sB

do not have the eigenvalue 1. By both methods, we could not find any nonsingular pair (A,B) that

does satisfy (1) or (2), for a considerably large scale of simulation experiments. Note that A can be

assumed as one of the following forms and B can be assumed as a similarity transformed version of

them by an arbitrary orthogonal matrix.

a b 0 0 0 0

−b a 0 0 0 0

0 0 c d 0 0

0 0 −d c 0 0

0 0 0 0 e f

0 0 0 0 −f e


,



a b 0 0 0 0

−b a 0 0 0 0

1 0 a b 0 0

0 1 −b a 0 0

0 0 0 0 c d

0 0 0 0 −d c


,



a b 0 0 0 0

−b a 0 0 0 0

1 0 a b 0 0

0 1 −b a 0 0

0 0 1 0 a b

0 0 0 1 −b a


. .

7 Construction of Absolutely nonsingular tensor with p > 3.

The method of construction of an absolutely nonsingular tensor for p = 3 is extended to a general p.

First we treat n = 4 and p = 4. We begin with a basic proposition about quaternions and it’s matrix

representation.

Proposition 7.1 Let H4 be the set of quaternions {x ∗ 1 + y ∗ i + y ∗ j + z ∗ k|x, y, z ∈ R} where

i2 = j2 = k2 = ijk = −1. Then H4 is a skew field and has a realization in GL(4,R) such that

1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , i =


0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0

 , j =


0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0

 , k =


0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0

 .

In this section these 4 elements are denoted by I, H1, H2 and H3 respetively. In our research of

absolutely nonsingular tensors, elements of the quaternion field have been consistently used (see [14,

17]).

7.1 n = 4 and p = 4

Proposition 7.2 Let A be any nonsingular 4×4 matrix. Let H1, H2 and H3 be the three nonsingular

skew-symmetric generating matrices of the quaternion field H4. Then, for any nonsingular matrix A,

a tensor T = (A;AH1;AH2;AH3) is an absolutely nonsingular tensor.

Proof Let fT (x, y, z, w) = |xA+ yAH1 + zAH2 +wAH3| be the determinant polynomial of T . We

need to show that |xA + yAH1 + zAH2 + wAH3| ̸= 0 for all (x, y, z, w) ̸= 0. Since |A| ̸= 0, this is

equivalent to |xI + yH1 + zH2 + wH3| ̸= 0 for all (x, y, z, w) ̸= 0. Since xI + yH1 + zH2 + wH3 is a

nonzero element of H4 for (x, y, z, w) ̸= 0, it is a nonsingular matrix. This proves the assertion.
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7.2 n = 4k and p = 4

Sumi et al. [17] constructed 8 × 8 × 8 tensors using 7 skew-symmetric matrices. For this parameter

we consider the extended skew-symmetric matrices of order 4k where each element is of the form

H̃i = diag(

k︷ ︸︸ ︷
Hi,Hi, . . . , Hi) with Hi ̸= I ∈ H4

Proposition 7.3 Let A be any nonsingular 4k × 4k matrix. Let H̃1, H̃2, and H̃3 be nonsingular

skew-symmetric matrices given in Proposition 7.1. Then a tensor T = (A;AH̃1;AH̃2;AH̃3) is an

absolutely nonsingular tensor of size 4k × 4k × 4.

Proof The proof is the same as Proposition 7.2 and omitted.

8 Equivalence and geometric invariants

Definition 8.1 Two tensors of the same size T1 = (A1; . . . ;Ap) and T2 = (B1; . . . ;Bp) are said to be

equivalent if

πPπQπRT1 = T2

where πP denotes the multiplication of each slice Ai by a nonsingular n×n matrix P from left and πQ
denotes the multiplication of each slice Ai by a nonsingular n×n matrix Q from right and πR denotes

the replacement of each slice Ai by a linear sum
∑p

j=1 rijAj where R = (rij) is a p × p nonsingular

matrix.

Since by equivalence the rank is unchanged and therefore it is of value to check the equivalence for

determining the rank of tensors. In Sakata et al. [15] , we proposed the two affine surface areas of

the constant surface of the determinant polynomial;Ω = {x|fT (x) = 1} and showed numerically its

usefulness to check nonequivalence between tensors.

9 Absolutely full column rank

Miyazaki et al. [9] extended the absolute nonsingularity to rectangular tensor and gave the following

definition.

Definition 9.1 Let T = (A1; . . . ;Ap) be an m × n × p tensor. Then if
∑p

i=1 xiAi has rank n for all

x ̸= 0, T is said to be an absolute full column rank tensor.

By this tool Miyazaki et al. [9] showed several results about typical ranks, which is defined as a integer

r such that there is tensors having a rank r with a positive measure.

10 Concluding remark

We reviewed a recent development of tensor rank determination problem, specially around absolutely

nonsingular tensors. We gave several new results and we presented a possible root toward solving the

nonexistence problem for n = 4k+2. For other n, we gave several construction methods of absolutely

nonsingular tensor.
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