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Introduction

Models specified in continuous time have attracted much attention over the past decades in various

fields of applications, for instance, physics and finance. Concrete specifications of continuous time

models generally contain unknown parameters that have to be estimated. For this inference problem,

the existing literature either assumes continuous-time observations to be given, or discusses inference

based on observations sampled discretely in time. Several authors have studied the problem of esti-

mating parameters when a diffusion process has been observed continuously. Reviews can be found in

Basawa and Prakasa Rao (1980), Liptser and Shiryaev (1978) and Kutoyants (2003). Notable papers

with continuous-time observations are Sørensen (1991), discussing the inference for diffusion processes

with jumps from continuous observations under the setting which includes the non-ergodic case, and

Akritas and Johnson (1981), in which the asymptotic inference for general Lévy processes has been

studied based on likelihood theory. Estimation problems for discretely observed diffusion processes

have been studied by many authors as well, for instance see Genon-Catalot and Jacod (1993), Dacunha-

Castelle and Florens-Zmirou (1986) and Bibby and Sørensen (1995). Among all possible observation

schemes, we are specifically interested in high-frequency sampling schemes. These schemes assume

the number of observations, n, increasing to infinity, the distance between observations, hn, tending

to zero and the whole observational interval, nhn, going to infinity. The first work on this scheme

is Prakasa-Rao (1983), proposing a least squares approach in case where the diffusion coefficient is

constant and the parameter of interest is one-dimensional. To prove asymptotic normality of this

estimator Prakasa-Rao (1983) assumed the time between observations tends to zero sufficiently fast

that nh2n → 0, and referred to this condition as a rapidly increasing experimental design assumption.

The present paper gives sufficient conditions under which, from a statistical point of view,

discrete observations from a high-frequency sampling scheme (satisfying the rapidly increasing exper-

imental design condition) contain as much information as continuous-time observations. It does so in

a fairly general jump-diffusion setting with time-varying drift and jump intensity. Our model assumes

the volatility function of the diffusion term to be fully specified, that is, it does not contain unknown
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parameters of interest. The reason for this is that, with a continuous-time observations, the volatility

function is essentially observable using the quadratic variation of the process and the inference prob-

lem of the diffusion term is degenerated. Some results for estimating the volatility function are given

in Doob (1953) and Genon-Catalot and Jacod (1994).

There is a large literature on the probabilistic convergence of discrete-time processes to continuous-

time jump-diffusions. However, it is important to note that such results do not imply that the sta-

tistical inference problems based on both types of processes are close in any sense. A prime example

is given in Wang (2002). This paper shows that while discrete-time GARCH processes are known to

converge to a continuous-time diffusion (see, Wang (2002)), the inference problems are different. The

reason is that for (asymptotic) equivalence of the inference problems, the likelihood-ratio processes

for various parameter values need to converge, not the process itself. This is another reason why we

assume throughout this paper that the volatility function does not contain unknown parameters.

This paper offers three contributions. First of all, we provide a Local Asymptotic Normality

result for a continuous-time observation from a jump-diffusion process. This result extends both Ku-

toyants (2003) in which the case of diffusion processes is discussed and, Jacod and Shiryaev (2002)

where conditions for LAN to hold are given for statistical models based on counting processes. Sec-

ondly, we give a sufficient condition on a general jump-identification mechanism that allows one to

reconstruct the continuous-time central sequence from discrete-time observations only. Thirdly, we

discuss an existing technique to identify jumps, proposed by Shimizu and Yoshida (2006), and show

that this fulfills the required condition.

LAN for continuous-time observations

Let Θ ⊂ Rd be an open parameter space. We consider, for θ ∈ Θ, the strong solution of

(1) dXt = µ(θ, Xt−) dt+ σ(Xt−) dWt + dJθ
t ,

where Jθ
t is defined by

Jθ
t =

Nθ
t∑

i=1

Ui.

This strong solution lives on the filtered probability space (Ω,F , (Ft)t≥0,Pθ), where Pθ is such that W

is a standard Brownian motion (with respect to (Ft)t≥0) and, conditionally on the path of X, (Nθ
t )t≥0

is a Poisson process with time varying intensity (λ(θ, Xt−))t≥0 and the Ui are i.i.d. random variables

with density f(θ, ·). Moreover, the jump UNt of J
θ at time t is supposed to be independent of Ft−.

We suppose, for all θ ∈ Θ, the functions µ(θ, ·), σ(·), λ(θ, ·), and f(θ, ·) satisfy the conditions of

the existence of a unique solution to (1) and the necessary conditions to ensure that (Xt)t≥0 is ergodic.

On the conditions of the ergodicity of diffusion processes with jumps, see Kwon and Lee (1999). In the

following ξ will be a random variable whose distribution, under Pθ, is that of the invariant measure

associated with the ergodic process X. Expectations under Pθ are denoted by Eθ. Finally, we denote

by P(T )
θ the probability measure induced by the process XT = {Xt, 0 ≤ t ≤ T}, under Pθ, in the

measurable space of right-continuous functions on [0, T ].

In this section, we consider the problem of inference about the parameter θ based on an obser-

vation XT where the sample path is observed in continuous time. In particular, we establish Local

Asymptotic Normality (LAN) for the family of probability measures
(
P(T )
θ ,θ ∈ Θ

)
.

Definition 1. A family of measures
(
P(T )
θ ,θ ∈ Θ

)
is called Locally Asymptotically Normal (LAN) at
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a point θ ∈ Θ if, for any h ∈ Rd, the likelihood ratio

LT (h) =

dP(T )

θ+ h√
T
;XT

dP(T )

θ;XT

,

admits the representation

(2) LT (h) = exp

[
h∗∆T (θ, X

T )− 1

2
h∗I(θ)h+ rT (θ,h, X

T )

]
,

where, under P(T )
θ ,

∆T (θ, X
T )

L−→ N (0, I(θ)), rT (θ,h, X
T ) = oPθ

(1).

We say that the family
(
P(T )
θ ,θ ∈ Θ

)
is LAN if it is LAN at every point θ ∈ Θ.

Note that in our model, given θ, W T , Nθ,T , and Ui, for i = 1, . . . , Nθ,T
T , are in the σ-algebra

generated by XT .

Proposition 2. Suppose that µ(θ, ·)/σ(·), λ(θ, ·), and f(θ, ·) satisfy suitable smoothness assumptions.

Then the family of measures
(
P(T )
θ ,θ ∈ Θ

)
is LAN for each θ ∈ Θ with central sequence,

∆T (θ, X
T ) =

∫ T

0

∇θµ(θ, Xu−)

σ2(Xu−)
dWu +

∫ T

0

∇θλ(θ, Xu−)

λ(θ, Xu−)

(
dNθ

u − λ(θ, Xu−) du
)

+

Nθ
T∑

i=1

∇θf(θ, Ui)

f(θ, Ui)
(3)

and Fisher information matrix

I(θ) = Eθ

[
∇θµ(θ, ξ)(∇θµ(θ, ξ))

∗

σ2(ξ)
+

∇θλ(θ, ξ)(∇θλ(θ, ξ))
∗

λ(θ, ξ)
+ λ(θ, ξ)

∇θf(θ, U1) (∇θf(θ, U1))
∗

(f(θ, U1))
2

]
.(4)

LAN for discrete-time observations

Jump-diffusion models of the type (1) are widely used in applications. Examples are the modeling

of security prices in financial markets, risks in insurance, etc. In practise, often, a continuous-time

observation XT is not available but the process is recorded in discrete time. More precisely, assume

that we observe the process X at times tni , i = 1, . . . , n, only. Assuming an appropriate high-frequency

sampling scheme, to be defined precisely below, we show that, from an asymptotic and local point-of-

view, the discrete-time observations Xtni
contain as much information as the continuous sample path

XT .

We assume that the sampling scheme is regularly spaced and high frequency. This means

that we observe the process X at time points tni = ihn, for i = 0, . . . , n, where hn is the length of the

observational intervals, where we assume nhn → ∞ and nh2n → 0 as n → ∞. In order to prove that the

limit experiment in the case of discrete-time observations equals that of continuous-time observations,

we show that the central sequence (3) in Proposition 2 can be obtained, up to op(1)-terms, based on

the discrete-time observations Xtn0
, . . . , Xtnn only. In particular this implies that the deficiency of the

continuous-time observations experiments with respect to the discrete-time observation experiments

tends to zero.

We prove that using high frequency data we can build a central sequence that differs from the

continuous central sequence (3) in terms of order oP(1). In this respect, we need to recall the concept

of Predictably Uniformly Tight (P-UT). To have an insight into P-UT see Jacod and Shiryaev (2002)

Section VI.6.
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Theorem 3. The statistical information in (Xtni
)0≤i≤n for inference about θ in the model (1) equals,

as n → ∞, that in Xnhn. To be precise the (Xtni
)0≤i≤n-measurable sequence

1√
nhn

∫ nhn

0

∇µ(θ, Xn
u )

σ(Xn
u )

dXn
u − 1√

nhn

∫ nhn

0

(
∇µ(θ, Xn

u )

σ(Xn
u )

µ(θ, Xn
u ) +∇λ(θ, Xn

u )

)
du

− 1√
nhn

∫ nhn

0

(
∇µ(θ, Xn

u )

σ(Xn
u )

∆Xn
u +

∇λ(θ, Xn
u )

λ(θ, Xn
u )

+
∇f(θ,∆Xn

u )

f(θ,∆Xn
u )

)
dNθ,n

u ,(5)

is a central sequence for (P(T )
θ ), where the sequence (Xn

t ) is defined by:

(6) Xn
t = Xtni

t ∈ [tni , t
n
i+1).

and Nθ,n is a sequence of semimartingales Predictably Uniformly Tight (P-UT) and such that con-

verges in probability to Nθ.

More formally, that means that (5) differs from (3) in terms of order oP(T )
θ

(1)

Moreover, using a jump identification mechanism proposed by Shimizu and Yoshida (2006), we

are able to show a possible choice for (Nθ,n
t )t≥0 that fulfills the requirement of Theorem 3.
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ABSTRACT

We establish Local Asymptotic Normality (LAN) for continuous observations from jump-diffusion

models with time-varying drift and jump intensity, but known volatility. We show that discrete-time

high-frequency observations from the same model contain, in an asymptotic and local sense, the same

information about the parameters of interest. More precisely, we provide sufficient conditions on a

jump identification mechanism that allows us to construct a central sequence for the continuous-time

model, using discrete-time observations only.
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