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Introduction

Electricity is a new commodity with special features. Its risk properties and the dynamics of

spot price variability are of primary concern for investors and operators. Therefore the volatility

structure of electricity prices is analyzed, modeled and the forecasting ability is examined given the

important applications in risk management and derivative pricing. In this paper, the volatility of

Italian electricity prices is explored making use of the available intra–daily information to provide

empirical evidence on volatility persistence and effects of explanatory variables. Previous studies on

electricity volatility focussed on several aspects. Recently, [2] show that increasing the number of

participants induces less volatility. A positive relations between liquidity, volume (meant as trading

activities) and volatility of future prices was found by [10]. However, their approach is not feasible

with Italian data1. We instead are going to consider and to test the impact of volume and realized

intr-daily volatility on price volatility. Therefore, this paper will contribute to the first estimation

of the relationships between intra–daily information and volatility in the Italian spot market making

use of hourly day–ahead prices and traded volumes. We characterize the dynamics of electricity

spot volatility in an ARMA–GARCH framework using intra-daily information, firstly the well known

“realized volatility” and secondly the demanded volumes. Then we perform volatility forecasting on

zonal basis to verify if these explanatory variables improve the forecasting performance. We show

that the realized volatility explains well the conditional variance and reduces its persistence, hence

inducing better volatility forecasts. We implement our analysis using hourly prices and volumes of the

Italian electricity wholesale market, considering two zones in which the Italian market is split. Other

authors have considered the intra–daily information, as in [4], who propose a model to distinguish

between jump and non-jump components of the total variation to the aim of characterize and forecast

the volatility of electricity prices. Instead, [12] propose the realized variance as ex–post measure for

volatility, defined as the sum of the squared intra-day returns, for forward contracts (one quarter and

one year ahead prices) to evaluate market volatility and to examine if the forecasting performance

is improved by explanatory variables. They also try to explain this observable volatility with other

correlated variables, as trading volume, time–to–maturity, asymmetries for negative shocks, and weekly

seasonality. [13] use high frequency data from Australian markets to model volatility using ARCH-type

models together with contemporaneous demand volumes, half–hour of the day, day of the week and

1According to the Italian independent system operator, liquidity is the ratio of volumes traded on the exchange

(day–ahead market) to total volumes including bilateral contracts. In other words, it is the ratio of power traded on

the exchange to total power volumes traded over the counter. By definition, even if hourly liquidity, volumes and prices

are provided, the determination of liquidity strictly depends on volumes, hence it is normal to observe dependance (or

strong correlation).
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month of the year, but they are concerned about the moment in which intra–day information arrives

and not in using all available high frequency information, as we propose. Moreover they document

persistent volatility processes and a positive volume–volatility relationship, whereas we prove, with

lagged volumes, that the relation is negative and more importantly that adding more information

reduces the persistence of market volatility, inducing better volatility forecasts.

The paper is structured as follows. The following section is devoted to description and pre-

liminary analysis of the employed data. Then proposed models are formulated and estimated on the

Italian market. Finally, some conclusions and remarks are presented in the final section.

Data description

The dataset used in this study concerns Italian hourly electricity prices and purchased volumes

from January 1, 2008 until December 31, 2010. The dataset is compiled by Italian independent system

operator, Gestore del Mercato Elettrico (GME), and there are no missing observations. The Italian

electricity market has been divided in seven physical zones 2 taking into account production and market

trading mechanisms (for a detailed explanation see [9]). In the present study we have deliberately

excluded two zones (South and Central South) because Calabria was eliminated at the end of 2008,

and this structural break has caused a strong level shift in both series of volumes and prices of the two

cited zones directly afterwards. This hourly dataset has been used to construct three series: the first

two are daily prices and realized daily variances of hourly returns, the third one is given by cumulated

daily volumes. Daily prices were computed as arithmetic means of 24 hourly prices determined each

day; then logarithmic hourly returns were computed and used to determine the intra–daily variance

as measure of realized volatility. And finally, the total daily demand was determined by adding all

hourly quantities of electricity demanded on one day. Volume and price dynamics at national level3

for year 2008 are reported in Figure 1 where the upper panels show the daily series, whereas the lower

panels show the weekly structure of both variables. The average values are computed along the whole

observed period for each day of the week4. Two features can be observed and they reflect different

forms of seasonality of electricity prices: the first one is a monthly behavior with higher demand

of electricity during winter and summer with corresponding higher prices; the second one is a clear

intra–week pattern with lower demanded volumes over the week–end and corresponding lower prices.

Instead of analyzing prices, we concentrate our attention on returns. The analysis of electricity

returns is more important than the analysis of prices when the focus is on the volatility. Indeed, the

analysis of returns gives insights about the process of instantaneous growth of prices as they measure

the time–to–time variations of prices, and indeed returns are very carefully monitored by investors

operating on electricity markets since volatility is of extreme interest in risk management.

GARCH models with realized volatility

The well–known stylized facts of electricity prices (see [14]) can be well modeled within the

framework of ARIMA–GARCH processes. The first part of the process allows to capture empirical

features of the conditional mean, while the GARCH component well fits the volatility of prices by

the estimated conditional variance of the process. In the literature about electricity prices at least

two approaches have been followed to take into account market volatility: the first one refers to the

analysis of electricity prices pt as in [11], [14] and [15], among others; whereas the second one considers

2These are North, Central North, Central South, South, Calabria, Sicily and Sardinia.
3The physical zones show similar features and are not reported for lack of space.
4Then for instance, the average demanded volumes on Monday are obtained as the arithmetic mean of the volumes

purchased on Monday from 01/01/2008 to 12/31/2010.
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Figure 1: National demanded Volumes and PUN Prices. Upper panels show the time dynamics of

variables in 2008. Lower panels report the average values of each day of the week computed on the

whole data–set. On the horizontal axis of lower panels 1 is for Monday and 7 for Sunday.

analysis of electricity price variations computed as log-returns or simple returns, as in [3], [17].

Among first studies, [9] performed an analysis of the Italian zonal market using daily medians

of prices and standard deviations and implemented ARFIMA models to account for a long memory

autocorrelation structure. Moreover, [8] used asymmetric GARCH models on returns of daily average

prices to study the volatility dynamics of European markets.

Given the strong seasonal behavior highlighted previously, a seasonal adjustment has been taken

into account when estimating the proposed models which can be formalized as follows:

rt = c+ φ1rt−1 + θ1εt−1 + . . .+ θqεt−q + γ1V olt−1 + ν1D1 + . . .+ ν6D6 + ν7CE + εt(1)

with εt|It−1 ∼ NID(0, σ2t ) and

σ2t = ω + αε2t−1 + βσ2t−1 + τ1V olt−1 + τ2RVt−1(2)

for t = 1, ..., T , rt = log(Pt/Pt− 1) is the return on electricity price (Pt) at time t. The θjεt−j terms

represent the moving average component of the return dynamics with coefficients θj for j = 1, . . . , q.

Dj with j = 1, . . . , 6 are dummies for days of the week and νj are the corresponding coefficients;

CE is a dummy variable accounting for calender effects and ν7 is the corresponding coefficient; the

φ1rt−1 term represents the autoregressive component of the return dynamics. Finally, V olt and RVt
are, respectively, the total volumes of electricity dispatched at day t and the daily realized volatility

computed as the variance of the hourly returns on prices during day t. Thus, the coefficients τ1 and τ2
estimate the effect that purchased volumes 5 and realized volatility exert on the conditional volatility.

To avoid problems of hendogeneity we included lagged values of volumes and realized volatility.

Usually GARCH models are estimated using daily time series of financial returns. The main

goal of this class of models is to use information about the current level of volatility to forecast future

levels of volatility. The most common measure of instant volatility for financial time series is given

5Remember that volumes are measured in MW and their levels are far larger than the average values of price volatility.

Then, to avoid values of estimates not easy to read, we decided to express volumes in hundred thousands (100,000) of

MW.
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by the squared value of returns. However a single daily return contains limited information about

the current level of volatility, so that GARCH models are quite slow in capturing the quick volatility

changes and they might take many periods to reach the new level (see [1]). In this paper we exploit

the common frequency of electricity prices which are usually determined on hourly base (for most

of the European markets) or on half–hourly base (for instance, in UK). The intra–daily frequency

allow to compute realized measures of volatility such as RVt or proxies of realized volatility, such as

V olt. We included both in the conditional variance equation and we observed less persistence since

this new intra–daily information makes the β coefficient non significant. Thus the final model for the

conditional variance is a ARCH(1) model with regressors. Moreover, following [7] and [16] we expect

better estimators and improved forecasts with this high-frequency data.

Empirical analysis: the Italian market

High-frequency data should give rise to improved estimators of the parameters ω, α and β and

improved forecasts as in [7] and [16]. Therefore, the forecasting performance of Reg-ARMA-ARCH

model is investigated. We assume to have knowledge of history up to the end of June 2010 and try to

assess the performance ability of the model. In other words, we use daily data from 01/01/2008 until

30/06/2010 as a sort of “training data set” and measure the forecasting performance of the model

until the end of 2010. Estimates for two zones (Sicily and North) are reported in Table 1. From these,

we can confirm that seasonality is important also in returns, as well as calendar effects and intradaily

information is always significant with the right signs. A “rolling windows” procedure has been used

Sicily North

Variable Coefficient P-value Coefficient P-value

c -0.128 0.000 -0.082 0.000

D1 0.353 0.000 0.235 0.000

D2 0.121 0.000 0.139 0.000

D3 0.161 0.000 0.109 0.000

D4 0.162 0.000 0.093 0.000

D5 0.160 0.000 0.091 0.000

D6 0.114 0.000 0.053 0.001

CE -0.048 0.008 -0.053 0.000

V olt−1 0.000 0.097 0.000 0.065

rt−1 0.726 0.000 0.786 0.000

εt−1 -1.191 0.000 -1.269 0.000

εt−2 0.180 0.023 0.176 0.034

εt−3 0.041 0.456 0.144 0.007

εt−4 -0.001 0.984 -0.050 0.232

εt−5 0.046 0.323 0.026 0.552

εt−6 0.027 0.530 0.042 0.289

εt−7 -0.062 0.055 -0.040 0.138

ω 0.078 0.000 0.051 0.000

α 0.132 0.0013 0.117 0.001

V olt−1 -1.15E-06 0.000 -8.85E-08 0.000

RVt−1 0.137 0.000 0.124 0.000

Table 1: Estimates of Reg–ARMA–ARCH models for Sicily and North

to evaluate the out-of-sample forecasting performance of the models. In simple words, the whole time

period is divided in two sub-periods, the first going from t = 1 to t = T −m and the second covering

the period from t = T −m+ 1 to T . The procedure is iterative as we use a different set of information

for estimating purposes rolling a windows of T − m observations over the original data–set. Every

time the estimated parameters are used to get a one–step–ahead forecast. In details:

• at time T −m the vector of estimates θT−m is obtained through different models (RW1, RW7,

Basic, Intermediate and Final) using data for t = 1, . . . , T −m; the forecast in T −m + h, is

then given by yT−m+h|T−m = f(θT−m, yT−m);

• at time T −m+1 the forecast for time T −m+h+1 is obtained on data for t = 2, . . . , T −m+1,

that is yT−m+h+1|T−m+1 = f(θT−m+1, yT−m+1).
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• . . .;

• the last forecast is estimated at time T − h as yT |T−h = f(θT−h, yT−h), using data for

t = d, . . . , T − h.

Returns

RW1 RW7 Basic Intermediate Final

RMSE 0.188 0.144 0.095 0.095 0.096

MAPE 0.002 0.002 0.001 0.001 0.001

Theil’s U - 0.748 0.474 0.480 0.485

DM - 1.535 3.311 0.150 -0.177

p-value - 0.062 0.000 0.440 0.570

Intraday volatility (1-step-ahead prediction)

RW1 RW7 Basic Intermediate Final

RMSE 0.013 0.015 0.013 0.013 0.012

MAPE 0.000 0.000 0.000 0.000 0.000

Theil’s U - 1.184 0.945 0.946 0.871

DM - -0.001 0.001 -1.862 1.862

p-value - 0.500 0.499 0.969 0.031

Standardized returns (1-step-ahead prediction)

RW1 RW7 Basic Intermediate Final

RMSE 1.429 1.134 0.876 0.848 0.793

MAPE 0.016 0.013 0.010 0.010 0.010

Theil’s U - 0.769 0.602 0.582 0.542

DM - 1.245 1.580 1.975 2.088

p-value - 0.107 0.057 0.024 0.018

Table 2: Forecasting performance in Sicily

At the end of the iterative procedure, m−h+ 1 h-step ahead forecasts are obtained. Analyzing

daily data of electricity prices, if m = 180, we can check the h-day ahead forecasting performance

for the last six months of data. We have measured the forecasting performance in predicting three

variables: returns (rt), conditional variance (σ2t ) and standardized returns (rt/σt) for Sicily and North.

To evaluate the gain obtained by using realized measures of volatility we considered four bench-

mark models: a simple random walk (RW1), a weekly random walk (RW7), the ARMA(1,7)–GARCH(1,1)

model without regressors (form now on, called “Basic Model”) and the Reg–ARMA(1,7)–GARCH(1,1)

model, that is the previous one with regressors (form now on, called “Intermediate Model”). The RW1

is a classical benchmark model whose forecasts are commonly called “naive” predictions. The forecast

function of the random walk is yt|t−1 = yt−1, that is the observed average price of yesterday is the

forecast for today. We take the value of two days ago if there was a holiday yesterday. The number

of days in the past is increased accordingly when there are two or more contiguous holiday days. The

RW7 is a forecast method which has been used as benchmark model in previous papers on electricity

loads forecasting (see [6]). The forecast function for the RW7 is yt|t−7 = yt−7, that is the average price

observed one week ago is the forecast for today.

We use the root mean squared forecast error (RMSE), the mean absolute percentage forecast

error (MAPE), the Theil’s U index as a set measures to assess the predictive goodness of each model.

We also apply the Diebold–Mariano test (see [5]) to compare different estimated models. Only results

for Sicily have been reported in Table 2.

Conclusions

In this paper, intra-daily volatility information has been used to improve fitting and forecasting

performance of conditional volatility models for electricity prices. The proposed models for the process

of electricity volatility, enriched by intra-daily information (daily volumes and realized variance),

reduce volatility persistence and provide good day–ahead forecasts. In details, looking at RMSE and

MAPE, we can conclude that basic, intermediate and final models show forecasting performances

better than the naive models. All proposed models produce similar forecasting errors, but lower than
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those of the first two models; and this for all three variables. In addition, it is evident that the final

model exhibits lower forecasting errors for intraday volatility and standardized returns, at least in

Sicily. Finally, considering the DM test, the forecasting performance for returns is deeply improved

when implementing models more sophisticated than naive ones. Further developments of this work

include the application of the same model to different markets in order to state a new stylized fact

for electricity prices. The next theoretical step will be the introduction of an equation to model the

temporal evolution of the realized volatility.
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