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1 Introduction

In nonlinear time series domain, the introduction of new models is often based on the generalization of

linear structures. In this paper we propose a generalization of the well known Vector Autoregressive

Moving Average (VARMA) model widely presented, among the others, in Lütkepohl (2006).

Let yt a K-variate time series, it is said to follow a VARMA(p, q) process if:

(1) yt = v + A1yt−1 + . . .+ Apyt−p + ut + M1ut−1 + . . .+ Mqut−q

where:

yt =

y1,t...

yK,t

 , ut =

u1,t...

uK,t

 , with ut ∼WN(0,Σu),

and coefficients

v =

 v1...
vK

 , Ai
(K×K)

= [as,r], Mi
(K×K)

= [ms,r], with i = 1, 2, . . . , p and j = 1, 2, . . . , q.

As in the univariate case where Tong (1983) proposes the Threshold ARMA model that can be seen as

nonlinear generalization of the linear ARMA process (for a wide presentation of nonlinearity in time

series analysis see Tong (1990), Fan and Yao (2003) whereas for the linear ARMA model see Box et al.

(2008)), even in the multivariate context the Threshold VARMA model (TVARMA) can be defined

starting from (1). More precisely a time series yt follows a TVARMA(`; p, q) model if:

(2) yt =
∑̀
k=1

[
v(k) + A

(k)
1 yt−1 + . . .+ A(k)

p yt−p + ut + M
(k)
1 ut−1 + . . .+ M(k)

q ut−q

]
I (xt−d ∈ Rk)

where xt is the univariate and stationary threshold process, d is the threshold delay, Rk = [rk−1, rk)

such that −∞ = r0 < r1 < . . . < r` = ∞,
⋃`

k=1Rk = R, rk is the so called threshold value (for

k = 1, 2, . . . , `) and {ut} is a sequence of independent white noise with E[ut] = 0 and covariance

matrix Σu.

Model (2) can be written equivalently as a TVAR(`; 1) process:

(3) Yt = A(k)Yt−1 + Ut, if xt−d ∈ Rk,
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with

Yt
[K(p+q)×1]

=



yt

...

yt−p+1

ut

...

ut−q+1


, Ut

[K(p+q)×1]
=


ut

0
[K(p−1)×1]

ut

0
[K(q−1)×1]

 ,

and matrix A(k) so partitioned

A(k)

[K(p+q)×K(p+q)]
=

[
A

(k)
11 A

(k)
12

A
(k)
21 A

(k)
22

]

where

A
(k)
11

(Kp×Kp)

=


A

(k)
1 . . . A

(k)
p−1 A

(k)
p

IK . . . 0 0
...

. . .
...

...

0
... IK 0

 , A
(k)
12

(Kq×Kq)

=


M

(k)
1 . . . M

(k)
q−1 M

(k)
q

0 . . . 0 0
...

. . .
...

...

0 . . . 0 0

 ,

A
(k)
21

(Kp×Kp)

= 0, A
(k)
22

(Kq×Kq)

=


0 . . . 0 0

IK . . . 0 0
...

. . .
...

...

0 . . . IK 0

 .
Starting from model (2), in Section 2 we discuss some properties of the TVARMA model mainly

related to the skewness of the data generating process that leads to select asymmetric loss functions

when the generation of forecasts is desired. More precisely, in Section 3, under the assumption that

the parameters of the model are all known, we show how predictions can be generated from model

(2) taking advantage not only of symmetric multivariate loss functions, traditionally used in the

linear domain, but even general multivariate loss functions. These functions appear to be not only

more flexible but even able to catch some features of the generating process that are neglected form

symmetric loss functions. The distribution of the predictors obtained from the selected general loss

function are investigated through a Monte Carlo study where symmetric and asymmetric forecasts are

compared.

2 Skewness of the TVARMA process

When a new model is proposed, one of the main interest is to evaluate which feature it is able to catch

in the generating process.

In the univariate case it is widely known (see among the others Tong (1990)) that the threshold

models can the preferred with respect to the linear time series models, in presence of data that show

skewness often neglected by other classes of stochastic structures. This property makes the threshold

model suitable in presence of business cycles or when the data show asymmetric behavior that is often

recognized in financial returns, hydrological time series and in most economic data.

In the multivariate context of the TVARMA model a similar property can be recognized. In

this domain, the main difficulty is related to the evaluation of the skewness of data that has been

differently discussed in the literature.
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Starting from Mardia (1970), several multivariate indices of skewness have been proposed each

having desirable properties. Among them we have considered the Kollo (2008) index that can be

seen as natural multivariate analogue of the one-dimensional measure of skewness (given by the third

moment of a standardized variable). Further it includes the information available in the Mardia (1970)

index and in some case it tries to face problems encountered in this last index.

The Kollo (2008) index is based on the definition of a K-vector given respectively by:

(4) b(yt) = E

 K∑
i=1

K∑
j=1

(zi,tzj,t)zt

 ,
where zt = Σ

−1/2
yt (yt − E(yt)) whereas zi,t and zj,t are two univariate standardized variables, for

i, j = 1, 2, . . . ,K.

To empirically evaluate the skewness of the TVARMA process, consider the following Example.

Example 1.

Let yt a stationary TVARMA(2; 1) model:

(5) yt =


v(1) +

[
0.7 0.3

0 0.4

]
yt−1 + ut +

[
−0.4 0.6

0.34 0

]
ut−1 if xt−1 ≤ 0

v(2) +

[
−0.5 0.1

−0.4 0.5

]
yt−1 + ut +

[
0 0

−0.8 0.3

]
ut−1 if xt−1 > 0

with ut ∼ N (0,Σu), Σu =

[
1 0

0 2

]
and xt ∼ AR(1) with parameter φ1 = 0.8.

In the univariate case, it is shown that the skewness of the threshold model is strongly related to the

value of the intercepts in each regime (Niglio and Vitale, 2010). This property seems to be confirmed

even in the multivariate case. To give evidence of this statement, in Figure 1 are presented the time

plot of the first 100 observations and the contour-plots of two traces (of length 500) generated from

model (5), where in the first model (first line of Figure 1) the two intercepts are v(1) = (0, 0) and

v(2) = (0,−1) whereas the second model (second line of Figure 1) has intercepts v(1) = (0, 0) and

v(2) = (−2,−1). The more asymmetric distribution of the second model, with respect to the first, can

be clearly graphically appreciated and further confirmed after the computation of the index (4) which

has values b(yt) = (0.7155,−0.1739) for the first model and b(yt) = (0.7742,−0.2506) for the second

model.

3 The forecasts generation

In time series analysis the generation of forecasts is based on the selection of a loss function L(·) such

that the optimal point forecast ŷt+h is obtained from

(6) arg min
ŷt+h

E [L (yt+h − ŷt+h) |Ft]

where Ft = [yt,yt−1, . . . ;xt, xt−1, . . .] is the information set (available up to time t) of model (2) and

h ∈ N+ is the forecast horizon.

When L (yt+h − ŷt+h) = (||yt+h − ŷt+h||)2, with || · || the Euclidean norm, the optimal predictor is
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Figure 1. Time plots (of the first 100 observations) and contour-plots of two bivariate

time series generated from model (5)
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the conditional expectation E[yt+h|Ft] that, for model (2) with h ≤ d, has the following form:

ŷt+h = E[yt+h|Ft]

=
∑̀
k=1

[
v(k) + A

(k)
1 yt+h−1 + . . .+ A(k)

p yt+h−p + M
(k)
1 ut+h−1 + . . .+ M(k)

q ut+h−q

]
I(xt+h−d ∈ Rk),(7)

where

yt+h−i =

{
yt+h−i if h ≤ i
E[yt+h−i|Ft] otherwise

and ut+h−j =

{
ut+h−j if h ≤ j
0 otherwise,

for i = 1, 2, . . . , p and j = 1, 2, . . . , q.

When h > d the threshold variable needs to be predicted as well. In this cases, generalizing what

proposed in the univariate context in Amendola et al. (2007), the forecast can be obtained as weighted

mean of the predictions generated by each regime:

(8) ŷt+h =
∑̀
k=1

ŷ
(k)
t+hp

(k), with h > d

where p(k) = P (xt+h−d ∈ Rk|Ft) is the probability that the threshold variable belongs to regime k,

given the information set Ft, and ŷ
(k)
t+h = E[y

(k)
t+h|Ft].

The symmetry of the loss function under which the predictor (7) is based could not be of interest

when the data generating process shows unquestionable asymmetries. In this case an asymmetric loss

should be selected to take into account the features of the process. In empirical domain an asymmetric

loss could be selected by agents interested to generate forecasts that differently treat the cost of over

or under prediction.

This kind of problem has been largely discussed for univariate time series (see among the others

Christoffersen and Diebold (1996, 1997), Granger (1999), Patton and Timmermann (2007a, 2007b,
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Figure 2. Contour plots of the forecasts (Forec) and of the prediction errors (PE) gen-

erated through a symmetric loss function and the asymmetric loss function (9) with

τ = (0.5, 0.5) (L1) and τ = (0.36,−076) (L2)
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2010)) but, in our knowledge, in the multivariate domain it has been only recently faced in Alp and

Demetrescu (2010) and Komunjer and Owyang (2010).

The approach used in the present paper is based on the loss function L(τ ; yt+h − ŷt+h) : BKq ×
RK → R proposed in Komunjer and Owyang (2010) given by:

(9) L(τ ; yt+h − ŷt+h) =
[
||yt+h − ŷt+h||p + τ ′(yt+h − ŷt+h)

]
||yt+h − ŷt+h||p−1p

where || · ||p is the lp norm, 1 ≤ p <∞, 1
p + 1

q = 1 and ||τ ||q < 1, with τ the K-vector of asymmetry.

In more datail we use the general loss function (9) with p = 2 (q = 2 consequently) and h = 1,

assuming that the vector τ is known. In other words the assumption on τ means that the asymmetry

of the function (9) is defined by agents that generate forecasts.

The minimization (6), under the loss function (9), is carried out using a Monte Carlo procedure

based on two main steps:

1. Estimation of the conditional distribution of yt+1. After generating n time series of length t+ 1

from model (2) the conditional distribution of yt+1 has been estimated non parametrically using

a kernel approach (Venables and Ripley, 2002);

2. Minimization. Following Alp and Demetrescu (2010), the optimal forecast ŷt+1 is obtained from

arg min
ŷt+1

1

W

W∑
w=1

L(yw
t+1 − ŷt+1)

where yw
t+1 is a pseudo-random number drawn from the conditional distribution of yt+1 and W

is the number of replicates that needs to be enough large.

To evaluate the proposed procedure we have simulated N = 1000 time series of length T = 500

from model (5) with v(1) = (0, 0) and v(2) = (0,−1) and for each of them we have generated forecasts
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using three predictors based on: 1) the conditional expectation (7); 2) the loss function (9) with p = 2,

h = 1 and τ = (0.5, 0.5), denoted L1; the loss function (9) with p = 2, h = 1 and τ = (0.36,−076),

denoted L2. The forecast generation through L1 and L2 has been performed following the two steps

of the Monte Carlo procedure described above, with n = 500 and W = 10000.

It is well known that a way to evaluate the predictors is based on the study of their distributions.

In this regard the contour plots of the densities estimated for ŷt+1 and the corresponding prediction

errors ût+1 = yt+1− ŷt+1 are presented in Figure 2 were it can be noted that the shape of the contour

plot of ŷt+1 in presence of a symmetric loss, is related to the fact that it can be seen as a mixture of

distributions. The contour plots of the prediction errors show a clear dependence between û1,t+1 and

û2,t+1 and further under L1 and L2 it can be noted a bias that is strictly related to the asymmetry of

the loss function. This bias, here empirically evaluated, has been largely investigated in the univariate

domain in Patton and Timmermann (2007a) and will be object of future research.
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