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ABSTRACT
Analysis of longitudinal count responses, affected by one or more explanatory variables, requires ad-
equate modeling of the correlations underlying the responses repeatedly collected over time. These
correlation structures may be then used with the corresponding means and variances of the process to
formulate quasi-likelihood estimating equations which can be solved to obtain reliable estimates of the
regression parameters. True Gaussian ARMA-type correlation structures have been found to be more
efficient against ’working’ as well as ’random effects based’ correlation structures in analyzing Pois-
son longitudinal counts. Quite often, count responses are under-dispersed or over-dispersed relative to
Poisson distribution. Com-Poisson distribution, due to its convincing properties, has been widely used
to describe under- or over- dispersed count data in cross-sectional set up. However, there exists no
application of Com-Poisson model in longitudinal case. The challenge lies in modeling the correlation
structure of repeated Com-Poisson counts. In this paper, we provide the framework for developing and
analysing a Com-Poisson model with AR(1)-type correlation structure under the longitudinal set-up.

INTRODUCTION
Com-Poisson distribution[10] is a weighted Poisson distribution, capable of modeling the counts sub-
ject to over-, under- or equi- dispersion. This capability of Com-Poisson distribution makes it a very
useful distribution in practice. Generalised linear models (GLM) based on this distribution have been
developed to analyse the regression effects in cross-sectional data where the count responses are col-
lected at a single time-point[3,6]. The estimation of regression parameters in cross-sectional models
can be done using maximum likelihood or quasi-likelihood estimation procedures[1,6]. Applications of
GLM’s are demonstrated for the analysis of over- as well as under- dispersed cross-sectional counts
arising in different studies[4,7,9]. However, in various fields of research, count responses from a group
of independent subjects are collected repeatedly over several time points and one is interested in es-
timating the effects of some known factors on these longitudinal count responses. Modeling of such
longitudinal data is quite challenging as the repeated counts of each subject are correlated and the
correlation pattern is unknown in practice. This is because it is extremely difficult to describe the
joint distribution of correlated count observations. The problem gets further mounted up when the
counts are over- or under- dispersed.
For the analysis of over-dispersed longitudinal count data, models have been developed by some au-
thors. For example, we refer to random effects models by Thall & Vail[13] and the marginal model by
Jowaheer & Sutradhar[5]. Concerning the analysis of under-dispersed longitudinal count data, there
exists no literature. In this paper,we construct longitudinal Com-Poisson model which can analyse any
of the three types of count responses : under-, over- or equi-dispersed. This model is basically an ex-
tension of Com-Poisson cross-sectional model developed by Jowaheer & Mamodekhan[6]. However, in
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extending a model from cross-sectional to longitudinal set-up, one has to adequately model the corre-
lations underlying the responses that are repeatedly collected over time. The longitudinal correlations
can be modeled using random effects [see Thall & Vail[13]], ’working’ ARMA structures [see Liang
& Zeger[8]] or ’true’ Gaussian type ARMA structures [see Jowaheer & Sutradhar[5]; Sutradhar[11]].
It has been shown that ’true’ Gaussian type ARMA correlation structures are the most efficient and
reliable in the sense that they are able to model the true underlying correlations of the repeated counts
(Crowder[2]; Sutradhar & Das[12]). Developing ARMA correlation structures of different orders for
correlated random variables following a discrete distribution is quite challenging and Com-Poisson
distribution in particular has a complicated probability mass function. Here, we provide a method for
developing and analysing Com-Poisson model with true AR(1)-type correlation structure under the
longitudinal set-up.

Com-Poisson Random Variable
Let yt be the count response at time t (i = 1, 2, . . . , I; t = 1, 2, . . . , T ), following Com-Poisson distri-
bution. Then

f(yt) =
λyt

(yt!)ν

1
Z(λ, ν)

,(1)

where

(2) Z(λ, ν) =
∞∑

j=0

λj

(j!)ν
, λ > 0

and the parameter ν is the dispersion index such that ν = 1, ν < 1and ν > 1 correspond to equi-,
over- and under- dispersion. Since equation (1) does not have closed form expressions, we use an
asymptotic expression for Z(λ, ν) proposed by Shmueli et. al[10] given by

(3) Z(λ, ν) ' exp(νλ
1
ν )

λ
ν−1
2ν (2π)

ν−1
2
√

ν

The approximation is particularly good for λ > 10ν . Hence,

(4) E(Yt) = θ = λ1/ν − ν − 1
2ν

, V ar(Yt) =
λ1/ν

ν

We can say that

(5) Yt ∼ CMP (
θ

ν
, ν)

As the responses are repeatedly collected over T time points, y1, y2, ..., yT are likely to be correlated.
Following Sutradhar & Das[12], these T repeated counts have Gaussian-type true but unknown auto-
correlation structure given by

(6) Ci(ρ1, . . . , ρT−1) =




1 ρ1 ρ2 ... ρT−1

ρ1 1 ρ1 ... ρT−2

...
...

...
...

ρT−1 ρT−2 ρT−3 ... 1




yielding the autocovariance structure

(7) Σ(ρ̃) = A
1
2 C(ρ1, . . . , ρT−1)A

1
2
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with A=diag var(Yt). We now derive the components of matrix C(ρ1, . . . , ρT−1) under stationary
AR(1) correlation pattern.

Generating a Sequence of AR(1)-Correlated Com-Poisson Responses
Let response random variable yt−1 at (t − 1)th time point follows CMP ( θ

ν , ν) and the error term
dt ∼ CMP ( (1−ρ)θ

ν̃ , ν̃) where

(8) ν̃ =
(2q0 + 1) +

√
(2q0 + 1)2 − 8q1

4q1

with q0 = (1 − ρ)θ, q1 = q0

ν [1 + ρ(1 − ν)] + ν−1
2ν2 (1 − ρ2) and 0 < ρ < 1. Then, the stationary AR(1)

model for the sequence {yt} can be formulated as

(9) yt = ρ ∗ yt−1 + dt

where 0 < ρ < 1. The symbol ∗ indicates the binomial convolution thinning operation such that

(10) ρ ∗ yt−1 =
yt−1∑

j=1

bj(ρ) = gt.

where prob[bj(ρ) = 1] = ρ and prob[bj(ρ) = 0] = 1− ρ.

(11) (gt | yt−1, ρ) ∼ Binomial(yt−1, ρ)

Hence, using equation (9), we obtain

E(Yt) = EYt−1E(ρ ∗ Yt−1|Yt−1, ρ) + E(dt)

= E(ρYt−1) + E(dt)

= ρE(Yt−1) + (1− ρ)θ

= θ(12)

V ar(Yt) = V ar(ρ ∗ Yt−1) + V ar(dt)

= V ar(E(ρ ∗ Yt−1)) + E(V ar(ρ ∗ Yt−1|Yt−1)) + V ar(dt)

= V ar(ρYt−1) + E(Yt−1ρ(1− ρ)) + V ar(dt)

= ρ2[
θ

ν
+

ν − 1
2ν2

] + ρ(1− ρ)θ + (
θ

ν
+

ν − 1
2ν2

)(1− ρ2)− ρ(1− ρ)θ

=
θ

ν
+

ν − 1
2ν2

(13)

E(YtYt−k) = EYt−k
EYt−k+1

. . . EYt(YtYi,t−k|Yt−1, Yt−2, . . . , Yt−k)

= EYt−k
[ρkY 2

t−k + ρk−1(1− ρ)θ2 + . . . + ρ(1− ρ)θ2 + (1− ρ)θ|Yt−k]

= ρk(
θ

ν
+

ν − 1
2ν2

+ θ2) + θ2(1− ρ)(ρk + ρk−1 + . . . + 1)

= ρk[(
θ

ν
+

ν − 1
2ν2

) + θ2] + θ2(1− ρk)(14)

(15) Cov(Yt, Yt−k) = E(YtYt−k)−E(Yt)E(Yt−k) = ρk(
θ

ν
+

ν − 1
2ν2

)

and

(16) ρk = Corr(Yt, Yt−k) =
Cov(Yt, Yt−k)√

V ar(Yt)
√

V ar(Yt−k)
= ρk
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Equation(16) justifies AR(1)-type stationary auto-correlations between longitudinal Com-Poisson counts
modelled by equation (9).

Longitudinal Com-Poisson Regression Model
Let yit be the count response of the ith individual at time t (i = 1, 2, . . . , I; t = 1, 2, . . . , T ). Let xit

be the p dimensional vector of covariates corresponding to yit. Let β be the p dimensional vector
of regression parameters. The Com-Poisson regression model can thus be formulated by replacing yt

with yit and λt by λit in equations (1) and (2) where

(17) λit = exp(xT
itβ)

Hence,

(18) f(yit) =
exp(xT

itβyit)[exp(xT
itβ(ν−1

2ν ))(2π)
ν−1
2ν
√

ν]

(yit!)ν [exp(ν exp(xT
itβ
ν ))]

where

(19) E(Yit) = θit = λ
1/ν
it − ν − 1

2ν
, V ar(Yit) =

λ
1/ν
it

ν

and the autocovariance structure,

(20) Σi(ρ̃) = A
1
2
i Ci(ρ1, . . . , ρT−1)A

1
2
i

with Ai=diag var(Yit). The correlation matrix is unique for all the I clusters ,i.e, Ci(ρ) = C(ρ).

Generalized Quasi-likelihood Estimating Equations
The GQL equations to estimate the regression and dispersion parameters of the longitudinal model
may be written as

(21)
I∑

i=1

DT
i Σ̃i

−1
(fi − µi) = 0,

where fi = (fT
i1, . . . , f

T
it , . . . , f

T
iT )T , µi = (µT

i1, . . . , µ
T
it, . . . , µ

T
iT )T are 2T × 1 vectors with fit = (yit, y

2
it),

µit = (θi1,mi1)T . θi1 = E(Yit) and mi1 = E(Y 2
it)

The components Di,Σ̃i,fi and µi are obtained in the same way as in Jowaheer & Sutradhar[5] such that

Di = [∂µi/∂βT , ∂µi/∂ν] = [DT
i1, . . . , D

T
it , . . . , D

T
iT ]T ,

with

Dit =

(
∂θi1/∂βT ∂θi1/∂ν

∂mi1/∂βT ∂mi1/∂ν

)

for t = 1, . . . , T where

∂θi1/∂βT =
λ

1
ν
i1

ν
xT

i1

∂θi1/∂ν =
ν − 1
2ν2

− 1
2ν
− λ

1
ν
i1x

T
i1β

ν2

∂mi1/∂βT = xT
i1(

2λ
1
ν
i1 + 2νλ

2
ν
i1 − νλ

1
ν
i1

ν2
)

∂mi1/∂ν =
1

2ν3
[2λ

1
ν
i1ν ln(λi1) + ν − 1− 4λ

2
ν
i1 ln(λi1)ν − 4λ

1
ν
i1ν − 4λ

1
ν
i1 ln(λi1)].
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The covariance matrix of fi is expressed as

Σ̃i =




Σ̃i1 Ω̃i12 Ω̃i13
... Ω̃i1T

Σ̃i2 Ω̃i23
... Ω̃i2T

Σ̃i3
... Ω̃i3T

. . .
Σ̃iT




where the diagonal submatrix

Σ̃it =

(
var(Yit) cov(Yit,Y 2

it)

var(Y 2
it)

)

and for t 6= w, the off-diagonal submatrix

Ω̃itw =

(
cov(Yit,Yiw) cov(Yit,Y 2

iw)

cov(Y 2
it,Yiw) cov(Y 2

it,Y
2
iw)

)

for t = 1, . . . , T and w = 1, . . . , T .
The GQL estimating equation (21) is solved by the Newton-Raphson iterative method to obtain

the estimates β̂ and ν̂ such that

(22)

(
β̂r+1

ν̂r+1

)
=

(
β̂r

ν̂r

)
+ [

I∑

i=1

DT
i Σ̃i

−1
Di]−1

r [
I∑

i=1

DT
i Σ̃i

−1
(fi − µi)]r

where β̂r is the value of β̂ at the rth iteration. [.]r is the value of the expression at the rth iteration.
ρ|t−w| is consistently estimated using the method of moments

ρ̂l =
∑I

i=1

∑T−l
t=1 ỹit ˜yi,t+l/(T − l)∑I

i=1

∑T
t=1 ỹit

2/T
(23)

for (l = |t−w| = 1, . . . , T −1) where ỹit = yit−θi1√
λ

1
ν
i1
ν

. The algorithm works as follows: For an initial value

of β̂ and ν̂, we calculate ρ̂l using (23) and then use these two sets of parameters to update the values of
β̂ and ν̂. Then the new set of parameters is used to calculate ρ̂l and the iteration continues in this way
until convergence. The estimators are consistent and under mild regularity conditions, for I → ∞,
it may be shown that I

1
2 ((β̂, ν̂) − (β, ν))T has an asymptotic normal distribution with mean 0 and

covariance matrix I[
∑I

i=1 DT
i Σ̃i

−1
Di]−1[

∑I
i=1 DT

i Σ̃i
−1

(fi − µi)(fi − µi)T Σ̃i
−1

Di][
∑I

i=1 DT
i Σ̃i

−1
Di]−1

Conclusions
In this paper, we provide a method of generating a sequence of Com-Poisson counts exhibiting Gaus-
sian AR(1)-type autocorrelations. AR(1) autocorrelation structure has been then used to develop
Com-Poisson longitudinal model to estimate the effects of fixed covariates on the repeatedly observed
under-, over- and equi-dispersed count responses obtained from a large number of independent in-
dividuals. The regression and dispersion parameters are estimated by generalised quasi-likelihood
estimation approach, whereas correlation parameters are estimated using method of moments.
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