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1 INTRODUCTION

Graphical models are multivariate statistical models in which the corresponding joint distribution of a

family of random variables is restricted by a list of conditional independence assumptions. This list is

conveniently summarised in a graph whose vertices represent the variables and whose edges represent

interrelations of these variables. Lauritzen (1996) and Cowell et al. (2003) are standard references on

the theory of graphical models but are mainly limited to the assumption of joint normality as far as

continuous variables are concerned. We propose a new type of statistical model that permits non-

Gaussian distributions as well as the inclusion of conditional independence assumptions induced by a

directed acyclic graph (DAG). This combination of features is achieved by using so-called pair-copula

constructions (PCCs) in which a multivariate distribution is decomposed into bivariate, potentially

conditional distributions based on iterated applications of Sklar’s theorem on copulas. The basic idea

of applying PCCs to distributions with certain conditional independence properties goes back to Hanea

et al. (2006) and Kurowicka and Cooke (2006). While these authors restricted their considerations to

Gaussian margins and copulas we utilise PCCs to specifically construct non-Gaussian distributions in

order to capture features such as tail behaviour and non-linear, asymmetric dependence as observed,

for instance, in financial data.

2 PAIR-COPULA CONSTRUCTIONS AND REGULAR VINES

A copula is a multivariate cumulative distribution function (cdf) C : [0, 1]d → [0, 1], d ∈ N, such

that all univariate marginals are uniform on the interval [0, 1]. By Sklar’s theorem (Sklar, 1959)

every cdf F : Rd → [0, 1] may be written as F (x1, . . . , xd) = C
(
F1(x1), . . . , Fd(xd)

)
for some suitable

copula C, where F1, . . . , Fd are the univariate marginals of F . If F is absolutely continuous and

F1, . . . , Fd are strictly increasing we can pass to its probability density function (pdf) and write

f(x1, . . . , xd) = c
(
F1(x1), . . . , Fd(xd)

)∏d
i=1 fi(xi), where the copula pdf c is uniquely determined.

Various examples of copulas together with the underlying theory are presented in Joe (1997) and

Nelsen (2006).

While there is a plethora of literature on bivariate copula families (also called pair-copula families),

the range of higher-variate copula families is rather limited. Based on work of Joe (1996), Bedford

and Cooke (2001, 2002) therefore proposed a flexible way of constructing multivariate copulas that

uses (conditional) pair copulas as building blocks only. The core of their approach is a graphical

representation called a regular vine that consists of a sequence of trees, each edge of which is associated

with a certain pair copula. Figure 1 shows an example of a D-vine, a popular type of regular vine.

According to Aas et al. (2009) the pdf of a D-vine pair-copula construction (PCC) on Rd is given by

f(x) =

d−1∏
i=1

d−i∏
j=1

cj,j+i|(j,j+i)
(
Fj|(j,j+i)(xj |x(j,j+i)), Fj+i|(j,j+i)(xj+i |x(j,j+i))

∣∣x(j,j+i)

) d∏
i=1

fi(xi).

Here we have written x(j,j+i) := (xj+1, . . . , xj+i−1). Also, Fj|(j,j+i)( · |x(j,j+i)) denotes the conditional

cdf of Xj given X(j,j+i) = x(j,j+i), where X = (X1, . . . , Xd) is distributed as f . The values of Fj|(j,j+i)
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and Fj+i|(j,j+i) in tree i ≤ d − 1 can be computed iteratively using a recursive formula given in Joe

(1996). The only copulas needed in this computation are the ones specified in the preceding trees.

1 2 3 4
12 23 34

12 23 34
13|2 24|3

13|2 24|3
14|23

Figure 1: A four-variate D-vine specifying the pair copulas C12, C23, C34, C13|2, C24|3, and C14|23.

We can construct a multitude of multivariate vine copulas by selecting a number of pair copulas

and by setting all univariate marginals to be uniform distributions on [0, 1]. The construction of a

d-variate vine copula requires the specification of
(
d
2

)
pair copulas, a number increasing quadratically

in d. The actual number of decisions to make in practical applications might, however, be lower if

the analysed data exhibit conditional independences. In that case the corresponding pair copulas

are nothing but product copulas with pdf equal to one. Instead of starting one’s analysis with a set

of regular vines it may therefore be more fruitful to look for conditional independences first. One

class of models tailored for this task are Bayesian networks. By transferring the pair-copula concept

to graphical models, Hanea et al. (2006) provided an opportunity to exploit the advantages of both

worlds. However, their analysis is restricted to Gaussian pair copulas. We will review PCCs for

directed graphs in the next section. A more detailed exposition of regular vines can be found in

Kurowicka and Cooke (2006, Section 4.4) and Kurowicka and Joe (2011).

3 PAIR-COPULA CONSTRUCTIONS AND DIRECTED ACYCLIC GRAPHS

Let V 6= ∅ be a finite set and let E be a subset of
{

(v, w) ∈ V 2
∣∣ v 6= w

}
such that (w, v) /∈ E whenever

(v, w) ∈ E. Then D = (V,E) is a directed graph with vertex set V and edge set E. We denote a pair

(v, w) ∈ E by an arrow v → w. A path in D is a sequence v1, . . . , vn ∈ V , n ≥ 2, such that D contains

all arrows vi → vi+1, i ≤ n− 1. In the special case v1 = vn the path v1, . . . , vn is a cycle. If there are

no cycles in D, then D is called a directed acyclic graph (DAG). For all v ∈ V we further set pa(v) :=

{w ∈ V |D contains w → v} (set of parents of v), de(v) := {w ∈ V |D contains a path from v to w}
(set of descendants of v), and nd(v) := V \

(
de(v) ∪ {v}

)
(set of non-descendants of v).

Now letD = (V,E) be a DAG, P a probability measure onR|V |, andX anR|V |-valued random variable

distributed as P . We write XI ⊥⊥ XJ | XK whenever XI := (Xi)i∈I and XJ are conditionally

independent given XK for pairwise disjoint sets I, J,K ⊆ V . P is said to be D-Markovian or,

equivalently, to possess the local D-Markov property if Xv ⊥⊥ Xnd(v) \pa(v) | Xpa(v) for all v ∈ V . In

case P has a Lebesgue-density f the D-Markov property is equivalent to f admitting a D-recursive

factorisation of the form f(x) =
∏
v∈V fv |pa(v)

(
xv
∣∣xpa(v)

)
for all x ∈ R|V |, where fv | pa(v) is the pdf

of Pv | pa(v). A comprehensive introduction to graphical models is found in Lauritzen (1996).

As an example consider the DAG from Figure 2 and an absolutely continuous probability measure

P on R4 possessing the respective local D-Markov property. Straightforward application of above

definition yields the restrictions X2 ⊥⊥ X3 | X1 and X1 ⊥⊥ X4 | X23. There are no other implicit

conditional independence properties in this example. The pdf of P admits the D-recursive factorisation

f(x) = f1(x1) f2|1(x2 |x1) f3|1(x3 |x1) f4|23(x4 |x23) for all x ∈ R4.

Our aim is to derive a pair-copula decomposition for the pdf f of a D-Markovian probability measure

P on R|V |. For every v ∈ V we therefore order the elements of pa(v) increasingly (with respect to
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Figure 2: A DAG D = (V,E) inducing the conditional independence properties X2 ⊥⊥ X3 | X1 and

X1 ⊥⊥ X4 |X23.

some strict total order < on V ) and set pa(v;w) :=
{
u ∈ pa(v)

∣∣u < w
}

, w ∈ pa(v). A proof of the

following theorem is given in Bauer et al. (2011).

Theorem 1. Let D = (V,E) be a DAG and let P be an absolutely continuous D-Markovian probability

measure whose univariate marginal cdfs are strictly increasing. Then P is uniquely determined by its

univariate margins Pv, v ∈ V , and its (conditional) pair copulas Cvw | pa(v;w), v ∈ V , w ∈ pa(v).

By Theorem 1 we can decompose f into

(1) f(x) =
∏
v∈V

∏
w∈pa(v)

fv(xv) cvw | pa(v;w)
(
Fv |pa(v;w)(xv |xpa(v;w)), Fw | pa(v;w)(xw |xpa(v;w))

∣∣xpa(v;w)

)
.

The remaining question is whether DAGs actually extend the set of pair-copula decompositions beyond

regular vines. This question is closely related to the computation of the conditional cdfs Fv |pa(v;w)
and Fw |pa(v;w) in equation (1). In contrast to vines, DAGs allow for the specification of conditional

cdfs that cannot be computed by simply plugging in results from preceding trees. Hence, the values of

these functions have to be computed via integration of other margins. In view of their application for

statistical inference, however, DAG-PCC models may be more parsimonious than vine-PCC models.

The lowest dimensional DAG models exhibiting this characteristic are the ones having the same Markov

properties as the DAG in Figure 2. In this case, equation (1) yields

f(x) = f1(x1) · · · f4(x4) c12
(
F1(x1), F2(x2)

)
c13
(
F1(x1), F3(x3)

)
c24
(
F2(x2), F4(x4)

)
· c34|2

(
F3|2(x3 |x2), F4|2(x4 |x2)

∣∣x2), x ∈ R4,

where F4|2(x4 |x2) =
∂C24

(
F2(x2),F4(x4)

)
∂F2(x2)

, see Joe (1996). Many popular copulas exhibit a closed form

expression for this partial derivative, see Aas et al. (2009). Since the copula C23 is not available in

the decomposition of f we exploit the conditional independence property X2 ⊥⊥ X3 | X1 to get

F3|2(x3 |x2) =

∫ 1

0
c12
(
u1, F2(x2)

) ∂C13

(
u1, F3(x3)

)
∂u1

du1.

A detailed derivation of this formula is given in Bauer et al. (2011). There is no general closed-form

solution for the integral.

4 LIKELIHOOD INFERENCE: A SIMULATION STUDY

With reference to Sklar’s theorem we restrict our considerations to DAG copulas in this section,

that is, DAG distributions with uniform [0,1] univariate margins. Let D = (V,E) be a DAG and

let {Pθ |θ ∈ Θ} be a family of D-Markovian probability measures on [0, 1]|V | satisfying the usual

assumptions. Given a realisation u =
(
u1, . . . ,un

)
∈
(
[0, 1]|V |

)n
, n ∈ N, of a sample of i.i.d. random

variables U1, . . . ,Un, equation (1) yields the log-likelihood function

L(θ;u) =
n∑
k=1

∑
v∈V

∑
w∈pa(v)

log cvw | pa(v;w)

(
Fv |pa(v;w)

(
ukv
∣∣ukpa(v;w);θ), Fw | pa(v;w)(ukw ∣∣ukpa(v;w);θ);θ)(2)
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for all θ = (θvw | pa(v;w))v∈V,w∈pa(v) ∈ Θ. On the right hand side we have omitted parameter subscripts

as well as the values of the conditioning variables in the pair-copula pdfs cvw | pa(v;w). The latter

omission is based on the assumption of constant copula parameters θvw |pa(v;w) for all observations uk,

k ≤ n. By that assumption the copula pdfs involved are treated as if they were unconditional. The cdfs

Fv | pa(v;w) and Fw | pa(v;w), however, remain conditional. This assumption reduces model complexity

while still encompassing a rich class of DAG copulas and has become common practice in likelihood

inference for PCCs, see Aas et al. (2009) and Hobæk Haff et al. (2010).

We examined the practical performance of the DAG-copula model by a simulation study. To this

end we drew samples from two families of DAG copulas with conditional independence properties

given by the DAG D in Figure 2. More precisely, these families of DAG copulas emerge from two

different choices of pair-copula families involved. In either setting we considered six different parameter

configurations, resulting in the twelve simulation scenarios described in Table 1. The copula families

used (Clayton, Gumbel, Gaussian, and Student’s t) exhibit notable differences in tail behaviour.

Within each copula family a range of values of Kendall’s τ as a dependence measure may be obtained

by suitable parameter choices. See Aas (2004) for the relations between copula parameters, tail

dependence, and Kendall’s τ .

Scenario 1 2 3 4 5 6

C12 Clayton δ 0.67 (0.25) 6.00 (0.75) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25)

C13 Gumbel δ 1.33 (0.25) 4.00 (0.75) 1.33 (0.25) 4.00 (0.75) 1.33 (0.25) 1.33 (0.25)

C24 Student ρ, ν 0.38, 5 (0.25) 0.92, 5 (0.75) 0.38, 5 (0.25) 0.38, 5 (0.25) 0.92, 5 (0.75) 0.38, 5 (0.25)

C34|2 Gauss ρ 0.38 (0.25) 0.92 (0.75) 0.38 (0.25) 0.38 (0.25) 0.38 (0.25) 0.92 (0.75)

Scenario 7 8 9 10 11 12

C12 Clayton δ 0.67 (0.25) 6.00 (0.75) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25)

C13 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25)

C24 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 6.00 (0.75) 0.67 (0.25)

C34|2 Clayton δ 0.67 (0.25) 6.00 (0.75) 0.67 (0.25) 0.67 (0.25) 0.67 (0.25) 6.00 (0.75)

Table 1: Twelve simulation scenarios given by various choices of copula families and parameters for

C12, C13, C24, C34|2, with notation as in Aas (2004). Parameters were chosen with regard to Kendall’s

τ as a measure of dependence. The values of τ for each scenario are given in parentheses.

In each simulation run we generated n = 1000 i.i.d. observations, and in each scenario we performed

N = 100 such runs. For each of the 1200 runs we then numerically calculated maximum-likelihood

(ML) estimates of the parameters of the underlying DAG-copula model (as specified in Table 1) and

compared them to the respective true parameters. Details on the sampling method and the routine

for finding ML estimates as well as an overview of the results in terms of empirical bias and mean

squared error (MSE) for this non-Gaussian DAG-copula model are given in Bauer et al. (2011). Figure

3 shows kernel density estimates of the maximised log-likelihoods for each scenario.

DAG-PCC models may be viewed as generalisations of Gaussian graphical models as presented in

Lauritzen (1996, Chapter 4). ML estimation in these models reduces to an estimation of the correlation

matrix, observing the restrictions captured in the DAG specifying the model, see Cox and Wermuth

(1996, Chapter 3). By choosing all univariate margins as well as all pair-copula families in a DAG-

PCC model based on a DAG D to be Gaussian we obtain the Gaussian graphical model based on

D. The Gaussian DAG copula corresponding to the DAG of our simulation study, for instance, is

a four-variate Gaussian copula, the shape of the correlation matrix of which can be found in Bauer

et al. (2011). Kernel density estimates of the maximised log-likelihoods for this Gaussian DAG-copula

model are given in Figure 3.

As stated in Section 3 the DAG-copula model corresponding to the DAG D of our simulation study

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS057) p.5313



cannot be represented by a regular vine. The D-vine with first tree 3 — 1 — 2 — 4 features

the same unconditional pair copulas C12, C13, and C24 as the DAG copula. The second and third

tree comprise the conditional pair copulas C23|1, C14|2, and C34|12. We performed ML estimation

in the corresponding D-vine-copula model for the 1200 runs of our simulation study and compared

the maximised log-likelihoods to those obtained in the Gaussian and the non-Gaussian DAG-copula

model. Details on the selection procedure for the copula families for C14|2 and C34|12 can be found in

Bauer et al. (2011). There is no actual choice to be made for C23|1 since we have U2 ⊥⊥ U3 | U1 by

construction. Hence C23|1 is the product copula.

Figure 3 shows that maximised log-likelihoods in the non-Gaussian DAG-copula models are roughly

50% higher than those obtained in their Gaussian counterparts. Even though the Gaussian DAG-

copula model in scenarios 1 through 6 has one parameter less than its non-Gaussian competitor

this difference in log-likelihood clearly shows the latter model’s superiority. Figure 3 also shows the

performance of the approximating D-vine-copula model. As this model and the non-Gaussian DAG-

copula model share the same unconditional pair copulas, it is not surprising that the maximised

log-likelihoods in these models differ mainly in those scenarios with high values of θ34|2, namely,

scenarios 2, 6, 8, and 12. Note, however, that the vine-copula model involves a higher number of

parameters than the non-Gaussian DAG-copula model and that its maximised log-likelihood is always

slightly inferior to that of the latter model.
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Figure 3: Kernel density estimates of the maximised log-likelihoods in 100 runs for each scenario

(see Table 1), based on the Gaussian DAG (dashed line), the non-Gaussian DAG (solid) and the

D-vine-copula model (dotted).

5 CONCLUSION

We have defined non-Gaussian DAG-copula models based on density factorisations that are driven by

two ideas: First, the D-recursive factorisation known from the literature on DAG models and second,

pair-copula constructions (PCCs) for the conditional densities resulting from that factorisation. Such

PCCs have been widely used in regular-vine models. Our approach in Section 3, however, is tailored to

constructing models with pre-specified Markov properties (as given by a DAG), a feature that cannot

be precisely implemented in vine models. The theoretical justification for that approach is given in

Theorem 1, which also states that univariate margins and pair copulas in these models can be freely

chosen and are not limited to the Gaussian case. As is demonstrated in Section 4 our non-Gaussian

DAG-copula models are suitable for likelihood inference and outperform both Gaussian DAG and
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D-vine-copula models in certain settings. Gaussian DAG-copula models exhibit particularly poor

performance in presence of non-normal tail behaviour.

We shall mention that our approach, which extends an idea from Hanea et al. (2006), involves con-

siderable computational effort. First, the pair-copula constructions used in our expansion of the

likelihood function give rise to conditional cdfs whose evaluation requires numerical integration. Sec-

ond, the routine for finding ML estimates faces the usual difficulties of non-linear high-dimensional

optimisation problems. Both issues were addressed in more detail in Bauer et al. (2011). Moreover,

selecting a suitable model from the class of non-Gaussian DAG-PCC models is still an open problem

and involves both the question for the assumed Markov structure and the question for suitable pair

copulas. In a similar vein, there is yet no clear answer to the question of whether regular-vine models

or non-Gaussian DAG-PCC models are preferable for modeling a given data set.
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A. Sklar. Fonctions de répartition à n dimensions et leurs marges. Publications de l’Institut de Statistique de
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