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Introduction

Transfer function models became very popular after the introduction of the so-called Box and Jenkins
models, see Box et al. (1994). A natural extension of the transfer function model for the case of nonstationary
time series that are both integrated of order d is the model

(1) Yt =
ω0(t) + ω1(t)B + . . .+ ωr(t)Br

1− δ1(t)B − . . .− δs(t)Bs
Xt−b + (1−B)−d

1− θ1(t)B − . . .− θq(t)Bq

1− φ1(t)B − . . . φp(t)Bp
at,

where b is the delay, at is white noise, with mean zero and constant variance, and ωt(B), δt(B), θt(B) and
δt(B) are now polynomial operators with time-varying coefficients.

Dahlhaus et al. (1999) considered the model

(2) Xt,T =
p∑
j=1

aj(t/T )Xt−j,T + σ(t/T )εt,

with εt i.i.d.(0, 1), the functions aj supported on the interval [0, 1] and connected to the underlying series by an
appropriate rescaling of time. Under some conditions, (2) has a sequence of solutions Xt,T of the form

(3) Xt,T =
∞∑
`=0

πt,T,`εt−`,

with supt,T
∑∞

`=0 |πt,T,`| < ∞. This implies a.s. convergence of the series in (2). See Künsch (1995) for
details.

Chiann and Morettin (1999, 2005) considered linear systems of the form

(4) Yt,T =
∑
j

aj(t/T )Xt−j,T + σ(t/T )εt,

where εt i.i.d.(0, 1) and aj as in (2), satisfying further conditions. Dahlhaus et al. (1999) and Chiann and
Morettin (1999, 2005) used wavelet expansions of the time-varying coefficients.
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In this paper we consider the model

(5) Yt,T =
s∑
i=1

δi(t)Yt−i,T +
r∑
j=0

ωj(t)Xt−j,T + εt, t = 1, . . . , T,

where εt is i.i.d. (0, σ2) and assume that the error and the input series are independent. Assumptions on the
functions ωj(t), j = 0, 1, 2, · · · , r, and δj(t), j = 1, 2, · · · , s, are given in Section 4. As in Dahlhaus et al.
(1999) we assume that the functions δj and ωj are supported on the interval [0, 1].

We consider the problem of estimating ωj(t), j = 0, 1, 2, · · · , r and δj(t), j = 1, 2, · · · , s, in time
domain, using wavelet expansions. Basic notions on wavelets are given in Section 2. We use least squares
to obtain the estimators of the wavelet coefficients. Then the detail coefficients are shrinked before the in-
verse wavelet transform is applied to obtain the final estimates of ωj(t) and δj(t). This results in a nonlinear
smoothing procedure. See Section 2 for further details.

Wavelets

In this section we discuss some basic ideas on wavelets. From two basic functions, the scaling func-
tion φ(x) and the wavelet ψ(x) we define infinite collections of translated and scaled versions, φj,k(x) =
2j/2φ(2jx−k), ψj,k(x) = 2j/2ψ(2jx−k), j, k ∈ ZZ. We assume that {φ`,k(·)}k∈Z ∪{ψj,k(·)}j≥`;k∈ZZ forms
an orthonormal basis of L2(R), for some coarse scale `. A key point (Daubechies, 1992) is that it is possi-
ble to construct compactly supported φ and ψ that generate an orthonormal system and have space-frequency
localization, which allows parsimonious representations for wide classes of functions in wavelet series.
In some applications the functions involved are defined in a compact interval, such as [0, 1]. This will be the
case of our functions ωj(t) and δj(t) in (5). So it will be necessary to consider an orthonormal system that
spans L2([0, 1]). Several solutions were proposed, the most satisfactory one being that by Cohen et al.(1993).
Accordingly, for any function f ∈ L2([0, 1]), we can expand it in an orthogonal series

(6) f(x) = α0,0φ(x) +
∑
j≥0

∑
k∈Ij

βj,kψj,k(x),

with the wavelet coefficients given by

(7) α0,0 =
∫
f(x)φ(x)dx, βj,k =

∫
f(x)ψj,k(x)dx,

and where Ij = {k : k = 0, . . . , 2j−1 − 1}, taking ` = 0.
Often we consider the sum in (6) for a maximum level J ,

f(x) ' α00φ(x) +
J−1∑
j=0

∑
k∈Ij

βjkψjk(x).

The thresholding technique consists of reducing the noise included in a signal through the application
of a threshold to the estimated wavelets coefficients β̂jk. Some commonly used forms are the soft and hard
thresholds, given by

δ(s)(β̂jk, λ) = (|β̂jk| − λ)+sgn(β̂jk),

δ(h)(β̂jk, λ) = β̂jkI(|β̂jk| ≥ λ),
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respectively.
In this paper we will use ordinary wavelets, as in Dahlhaus et al. (1999), since they work well for our

purposes. See also a related discussion in Morettin and Chiann (2008). We will make use in particular of
Daubechies least asymmetric wavelets in the simulations and application.

Estimators

Consider model (5), with the orders r and s assumed to be known. The idea is to expand δi(t), i =
1, . . . , s, and ωi(t), i = 0, 1, . . . , r, in wavelet series

δi(u) = α
(δi)
00 φ00(u) +

J−1∑
j=0

∑
k∈Ij

β
(δi)
jk ψjk(u), i = 1, . . . , s,(8)

ωi(u) = α
(ωi)
00 φ00(u) +

J−1∑
j=0

∑
k∈Ij

β
(ωi)
jk ψjk(u), i = 0, . . . , r.(9)

The empirical wavelet coefficients are obtained minimizing

(10)
T∑

t=q+1

Yt,T − s∑
i=1

δi(t)Yt−i,T −
r∑
j=0

ωj(t)Xt−j,T

2

,

with δi(t) and ωi(t) replaced by (8)-(9), q = max(r, s). These empirical wavelet coefficients are then mod-
ified using a soft threshold and finally we build estimators of δi(t) and ωi(t) by applying the inverse wavelet
transform to these thresholded coefficients.

For easy of exposition we restrict our attention from now on to the simple model with s = 1 and r = 0,
namely

(11) Yt,T = δ1(t/T )Yt−1,T + ω0(t/T )Xt,T + εt.

So we regress Yt,T on Xt,T and Yt−1,T , using the expansions (8)-(9) for δ1(t/T ) and ω0(t/T ). Let
∆ = 2J − 1. In matrix notation we have


Y2,T

Y3,T
...

YT,T

=


φ00

(
2
T

)
Y1,T ψ00

(
2
T

)
Y1,T · · · ψJ−1,∆

(
2
T

)
Y1,T

φ00

(
3
T

)
Y2,T ψ00

(
3
T

)
Y2,T · · · ψJ−1,∆

(
3
T

)
Y2,T

...
...

. . .
...

φ00

(
T
T

)
YT−1,T ψ00

(
T
T

)
YT−1,T · · · ψJ−1,∆

(
T
T

)
YT−1,T




α
(δ1)
00

βδ100
...

β
(δ1)
J−1,∆

+

+


φ00

(
2
T

)
X2,T ψ00

(
2
T

)
X2,T · · · ψJ−1,∆

(
2
T

)
X2,T

φ00

(
3
T

)
X3,T ψ00

(
3
T

)
X3,T · · · ψJ−1,∆

(
3
T

)
X3,T

...
...

. . .
...

φ00

(
T
T

)
XT,T ψ00

(
T
T

)
XT,T · · · ψJ−1,∆

(
T
T

)
XT,T




α
(ω0)
00

β
(ω0)
00
...

β
(ω0)
J−1,∆

+


ε2

ε3
...
εT

 .(12)

It follows easily that the least squares estimators of the coefficients are then given by[
β̂

(δ1)

β̂
(ω0)

]
=

[
Ψ′Y ΨY Ψ′Y ΨX

Ψ′XΨY Ψ′XΨX

]−1 [
Ψ′Y Y
Ψ′XY

]
,(13)

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS020) p.6213



where ΨX = [ΦX Ψ(0)
X · · · Ψ(J−1)

X ], ΨY = [ΦY Ψ(0)
Y · · · Ψ(J−1)

Y ] and

ΦX =


φ00

(
2
T

)
X2,T

φ00

(
3
T

)
X3,T

...
φ00

(
T
T

)
XT,T

 ,
and

Ψ(m)
X =


ψm0

(
2
T

)
X2,T ψm1

(
2
T

)
X2,T · · · ψm,2m−1

(
2
T

)
X2,T

ψm0

(
3
T

)
X3,T ψm1

(
3
T

)
X3,T · · · ψm,2m−1

(
3
T

)
X3,T

...
...

. . .
...

ψm0

(
T
T

)
XT,T ψm1

(
T
T

)
XT,T · · · ψm,2m−1

(
T
T

)
XT,T

 .
Having obtained the estimates given by (13) we plug them in (8) and (9), resulting in linear estimates

δ̂i(u) and ω̂i(u). Finally nonlinear smoothed estimators are obtained applying some thresold to the detail
coefficients β̂(i)

jk and these will be denoted by δ̃i(u) and ω̃i(u), respectively.

Properties of empirical coefficients

Now we present some properties of the empirical wavelet coefficients. The techniques used to prove the
results are quite evolved and are based on function space theory. Basically we adapt the results of Dahlhaus et
al. (1999) for the transfer function model (5).

We assume that functions ωi(u), i = 0, 1, . . . , r and δi(u), i = 1, . . . , s belong to some function spaces
Fi given by

Fi =

{
f = α00φ+

∑
j,k

βjkψjk : ‖ α00 ‖≤ Ci1, ‖ β.. ‖m,p,q≤ Ci2

}
,

where

‖ β.. ‖m,p,q=

∑
j≥0

2jsp
∑
k∈Ij

|βjk|p
q/p


1/q

,

s = m+ 1/2− 1/p. Here, m is the smoothness degree, p and q (1 ≤ p, q ≤ ∞) specify the norm and Ci1 and
Ci2 are positive constants. For these function spaces, the following result is valid (see Donoho et al., 1995):

sup
fi∈Fi

{∑
j≥J

∑
k

|β(i)
jk |

2

}
= O

(
2−2Js̃i

)
.(14)

where s̃i = mi + 1/2− 1/p̃i, with p̃i = min{pi, 2}.
These classes contain Besov, Hölder andL2−Sobolev spaces, see, for example Vidakovic (1999), Dahlhaus

et al. (1999) and Triebel (1992).
It can be shown, see Donoho et al. (1995), that the loss in (12) by truncating at level J is of order

T−2mi/(2mi+1), if we choose J such that 2J−1 ≤ T 1/2 ≤ 2J . This is achieved if s̃i > 1.
Concerning the wavelets, we assume that φ and ψ are compactly supported on [0, 1] and have continuous

derivatives up to order r > m, with m = maxmi. We denote the spectral norm by ‖ · ‖2 and the sup norm by
‖ · ‖∞.
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In order to analyze the statistical behavior of the estimated coefficients it is convenient to assume that we
take expansions of these coefficients as linear combinations of functions in the ṼJ spaces, generated by {φJ,1,
φJ,2,· · · , φJ,2J}. With this basis, we can write

Yt,T =
2J∑
i=1

ζ
(δ1)
J,i φJ,i

(
t

T

)
Yt−1,T (t) +

2J∑
i=1

ζ
(ω0)
J,i φJ,i

(
t

T

)
Xt,T + γt,T ,(15)

where

γt,T =
∑
j≥J

∑
k∈Ij

β
(δ1)
jk ψjk

(
t

T

)
Yt−1,T +

∑
j≥J

∑
k∈Ij

β
(ω0)
jk ψjk

(
t

T

)
Xt,T + εt.(16)

Equation (15) in matrix form becomes

Y =
[
ϕY

... ϕX

] ζ(δ1)

· · ·
ζ(ω0)

+ γ.c(17)

The relationship between
(β(δ1)

β(ω0)

)
and

(ζ(δ1)

ζ(ω0)

)
is(

β(δ1)

β(ω0)

)
= Γ

(
ζ(δ1)

ζ(ω0)

)
,

where the Γ is a (2J+1 × 2J+1) block diagonal matrix. The matrix Γ does the transformation (α̂(i)
00 , β̂(i)

00 , β̂(i)
10 ,

β̂
(i)
11 , · · · , β̂(i)

J−1,0, · · · , β̂(i)
J−1,∆)′ = Γ(ζ̂(i)

J,1, · · · , ζ̂(i)

J,2J
)′, so each coefficient estimate β̂(i)

jk , i = δ1, ω0 in (13) can

be written as β̂(i)
jk = Γ

′
i,jkζ̂, and ‖Γδ1,j,k‖L2 = ‖Γω0,j,k‖L2 = 1.

Equation (17) can be written in the form

(18) Y = Υζ + γ,

with Υ =
[
ϕY

...ϕX

]
, ζ =

(ζ(δ1)

ζ(ω0)

)
and the vector γ has lines given by (16). The least squares estimator of ζ is

given by

ζ̂ =
(
Υ′Υ

)−1 Υ′Y.(19)

We notice that the error term γ is not independent from the regressors Υ, which means that the estimator
is biased.

We now state results on the square error and mean square error of the empirical wavelet coefficients.
Dahlhaus et al. (1999) prove asymptotic normality of these coefficients, assuming that the k-th order cumulants
of εt in model (2) are uniformly bounded and the process Xt,T has the moving average representation (3). We
believe that a similar result can be proved for our estimators, under appropriate conditions on the processes
εt, Xt,T and Yt,T . This will be the subject of further research.

The following assumptions are needed for the proofs of propositions that follow.

(A1) We assume that φ and ψ are compactly supported on [0, 1] and have continuous derivatives up to order
r > m, with m = maxmi.
(A2) In the estimation procedure we have used first a linear estimator, truncating the wavelet expansion at scale
2J . In order to get functions with the appropriate smoothness, J was chosen such that s̃i > 1.
(A3) The matrix Υ in (18) satisfies E||(Υ′Υ)−1||2+η

L2
= O(T−2−η), for some η > 0.

Proposition 1. Under Assumptions (A1)-(A3) we have that ‖ ζ̂ − ζ ‖2∞= Op
(
2JT−1 log(T )

)
.
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Proposition 2. If Assumptions (A1)-(A3) hold, then E
(
β̂

(i)
jk − β

(i)
jk

)2
= O

(
T−1

)
holds uniformly in i, k and

j < J .

Further remarks

In this paper we have proposed an estimation procedure for a transfer function model with time-
varying coefficients. Basically it is a least squares procedure, with the use of wavelets to expand the function
coefficients. Firstly, linear estimators for the time-varying coefficients are obtained, truncating the wavelet
expansion at an appropriate scale. Then thresholds are applied to the empirical wavelet coefficients to obtain
nonlinear smoothed estimators for the function coefficients. Simulations have shown that this procedure leads
to estimators with a good performance. See Moura et al. (2010) for details and for an empirical application.
Some statistical properties for the empirical wavelet coefficients were derived. Further studies are needed on
the estimation of the variance and asymptotic normality of the empirical wavelet coefficients, on the rate for
the risk of the thresholded estimator over the smoothness classes Fi and on issues related to the identification
and diagnostics for these non-stationary models.
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