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The topic addressed in this paper was initially motivated by questions resulting from recent lab-
oratory experiments designed to empirically test and understand advection-dispersion in the presence
of sharp interfaces; e.g., experiments by [6], [5] [4]. Such laboratory experiments have been rather
sophisticated in the use of layers of sands and/or glass beads of different granularities and modern
measurement technology. As a result they have uncovered a convincing empirical foundation for some
interesting and unexpected phenomena that had escaped prior theoretical notice and explanation. To
this end it is natural to inquire about the effect of an interface on the stochastic particle motion of
immersed solutes. From a general mathematical point of view an interface is defined by a hypersur-
face across which the dispersion coefficient is discontinuous. As is well-known for the case of dilute
suspensions in a homogeneous medium (e.g., water), perhaps flowing at a rate v, the particle motion
is that of a Brownian motion with a constant diffusion coefficient D > 0 and drift v. For simple
one-dimensional flow across an interface, a localized point interface results in a skewness effect that
explains much of the empirically observed results noted above; see [9], [10], [1], [2], [11].
Problem As an illustration of empirical findings, suppose that a dilute solute is injected at a point
L units to the left of an interface at the origin and retrieved at a point L units to the right of the
interface. Let D− denote the (constant) dispersion coefficient to the left of the origin and D+ that
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to the right, with say D− < D+. Conversely, suppose the solute is injected at a point L units to the
right of the interface and retrieved at a point L units to the left. Which will be retrieved first ?

For positive parameters D+, D−, consider a piecewise constant dispersion coefficient with inter-
face at x = 0 given by

D(x) = D−1(−∞,0)(x) + D+1[0,∞)(x), x ∈ R.

Theorem 1 Let D+, D− be arbitrary positive numbers, with say D− < D+. Define Y
(α∗)
t =

s(B(α∗)
t ), t ≥ 0, where B(α∗) is skew Brownian motion with transmission parameter α∗ = D+

D++D− ,

and s(x) =
√

D+x1[0,∞)(x) +
√

D−x1(−∞,0](x), x ∈ R. Let Ty = inf{t ≥ 0 : Y
(α∗)
t = y}. Then,

(a) For smooth initial data c0, c(t, y) = Eyc0(Y
(α)
t ), t ≥ 0, solves

∂c

∂t
=

1
2

∂

∂y
(D(y)

∂c

∂y
), D+ ∂c(t, 0+)

∂y
= D−∂c(t, 0−)

∂y
.

(b) For y > 0, P−y(Ty > t) ≤
√

D−√
D+

Py(T−y > t) < Py(T−y > t), t ≥ 0.

Remark This basic result was obtained [2] in terms of first passage times, however the factor
√

D−/
√

D+

was not included in the statement of the result there. Related phenomena and results on dispersion
in this context are also given in [9], [10], [1], [11]. In addition, a formula for the first passage time
distribution for skew Brownian motion was recently obtained in [3]. In principle, the identification
of stochastic particle motions can have computational advantages. Results pertaining to Monte-Carlo
simulations of skew diffusions are described in [7] and references therein.

As illustrated by the examples below, the role of interfacial phenomena is of much broader inter-
est than suggested by advection-dispersion experiments. However the specific nature of the interface
can vary, depending on the specific phenomena. We briefly describe three distinct classes of examples
of phenomena from the biological/ecological sciences in which interfaces naturally occur.

Example 1 (Coastal Upwelling and Fisheries) Up-wellings, the movement of deep nutrient rich
waters to the sun-lit ocean surface, occur in roughly one percent of the ocean but are responsible for
nearly fifty-percent of the worlds fishing industry. The up-welling along the Malvinas current that
occurs off of the coast of Argentina is unusual in that it is the result of a very sharp break in the
shelf, rather than being driven by winds. The equation for the free surface η as a function of spatial
variables (x, y) is of the form

∂η

∂y
= − r

f

(
∂h

∂x

)−1 ∂2η

∂x2
,

where r > 0 and f < 0 in the southern hemisphere, and h(x) is the depth of the ocean at a distance x

from the shore. In particular, the sharp break in the shelf makes h′(x) a piecewise constant function
with positive values H+,H−. The location of the interface coincides with the distance to the shelf-
break. If the spatial variable y > 0 is viewed as a “time”parameter, then this is a skew-diffusion
equation, however the physics imply continuity of the derivatives ∂η/∂y at the interface; see [8] and
references therein.

Example 2 (Fender’s Blue Butterfly) The Fenders Blue is an endangered species of butterfly
found in the pacific northwestern United States. The primary habitat patch is Kinkaid’s Lupin flower.
Quoting [14], “Given past research on the Fender’s blue, and the potential to investigate response to
patch boundaries, we ask two central questions. First, how do organisms respond to habitat edges?
Second, what are the implications of this behavior for residence times?” Sufficiently long residence
(occupation) times in Lupin patches are required for pollination, eggs, larvae and ultimate sustainabil-
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ity of the population. Empirical evidence points to a skewness in random walk models for butterfly
movement at the path boundaries.

Example 3 (Sustainability on a River Network) The movement of larvae in a river system
is often modeled by advective-dispersion equations in which the rates are determined by hydro-
logic/geomorphologic relationships in the form of the so-called Horton laws. In general river networks
are modeled as directed binary tree graphs and each junction may be viewed as an interface. Con-
servation of mass leads to continuity of flux of larvae across each stream junction as the appropriate
interface condition. Problems on sustainability in this context are generally formulated in terms of
network size and characteristics relative to the production of larvae sufficient to prevent permanent
downstream removal at low population sizes; see [12] for recent results in the case of a river network.

The following theorem provides a useful summary of the interplay between diffusion coefficients
and broader classes of possible interfacial conditions illustrated by these examples. The proof follows
by a straightforward application of the Itô-Tanaka formula.

Theorem 2 Let D+, D− be arbitrary positive numbers and let 0 < α, λ < 1. Define Y
(α)
t =

s(B(α
t )), t ≥ 0, where B(α) is skew Brownian motion with transmission parameter α and s(x) =√

D+x1[0,∞)(x) +
√

D−x1(−∞,0](x), x ∈ R. Then

Mt = f(Y (α)
t )− 1

2

∫ t

0
D(Y (α)

u )f ′′(Yu)du, t ≥ 0,

is a martingale for all f ∈ Dλ = {f ∈ C2(R\{0}) ∩ C(R) : λf ′(0+) = (1− λ)f ′(0−)} if and only if

α = α∗(λ) =
λ
√

D−

λ
√

D− + (1− λ)
√

D+
.

Remark This theorem is a generalization of the results obtained by [9] and [1] for the case of advection-
dispersion problems across an interface described at the outset, where the parameter λ = D+

D++D− and

α∗ =
√

D+√
D++

√
D− .

Definition With the choice of α∗ ≡ α∗(λ) given by Theorem 2, we refer to the process Y α∗ as the
physical diffusion corresponding to the dispersion coefficients D+, D− and interface parameter λ.

Observe that in the application to the coastal up-welling problem one obtains

α∗ =

√
D−

√
D+ +

√
D−

.

The physical diffusion for this example may be checked to coincide with the Stoock-Varadahn mar-
tingale in this case; see [15] for the definition of the corresponding martingale problem. Note that
the answer to the first passage time problem will be exactly opposite to that obtained for advection-
dispersion experiments under this model.

We conclude with a result to show that the issue raised in Example 2 relating interfacial condi-
tions to residence times is indeed a sensitive problem.

Theorem 3 Let Y α∗ denote the physical diffusion for the dispersion coefficients D+, D− and interface
parameter λ. Define modified occupation time processes by

Γ̃+(t) =
∫ t

0
1[Y (α∗)

s > 0]ds, t ≥ 0.
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Similarly let Γ̃−(t) = t− Γ̃+(t), t ≥ 0. Then,

Γ̃+(t) > Γ̃−(t) ∀t > 0 ⇐⇒ λ >

√
D+

√
D+ +

√
D−

,

with equality when λ =
√

D+√
D++

√
D− .

Proof Let λ(x) = 2λ1[0,∞)(x) + 2(1 − λ)1(−∞,0)(x), and define ρ(x) = D(x)/λ(x). Consider the time
change τρ(t, ω) defined by ∫ τρ(t)

0

1
ρ(Bs)

= t, t ≥ 0.

Define Sρ by B(t, Sρ(ω)) = B(τρ(t, ω), ω) = Z(t, ω). Then the process Z is a diffusion with zero drift
and diffusion coefficient D±

λ2(x)
with interface parameter λ = 1/2. Now observe that

Γ+
Y (α∗)(t) :=

∫ t

0
1[Y (α∗)

s > 0]d < Y (α∗) >s

=
∫ t

0
1[Zs > 0]4λ2d < Z >s

= 4λ2
∫ t

0
1[B(τρ(s) > 0]

D+

4λ2
ds

= 4λ2Γ+
B(τρ(t)).

Similarly Γ−
Y (α∗)(t) = 4(1− λ)2Γ−B(τρ(t)). Thus (1− λ)2Γ+

Y (α∗)(t) = λ2Γ−
Y (α∗)(t). Now observe that

Γ̃+
Y (α∗)(t) =

∫ t

0
1[Zs > 0]ds =

4λ2

D+
Γ+

B(τρ(t)),

and similarly for Γ̃+
Y (α∗)(t), to arrive at

D−

(1− λ)2
Γ̃−(t) =

D+

λ2
Γ̃+(t).

The assertion now follows. QED

It is interesting to note that under the mass conservation interface parameter λ = D+/(D+ +
D−), the particle will reside longer in the region with the faster dispersion rate. While this is to be
expected for physical experiments of dispersion in porous media of the type described above, it shows
that the conservative interface condition (defined by this choice of λ) is likely not appropriate for
models of animal movement !

Remark A related phenomena in terms of a “modified local time”is described in [2]. The modification,
denoted with the ,̃ refers to an integration with respect to Lebesgue measure in place of quadratic
variation in the usual mathematical definition of local time and quadratic variation; e.g., see [13]. In
general, the treatment of dispersion in the presence of interfaces suggests that the physical/biological
theories are, to the extent possible, naturally based on a modification of local times and occupation
times in which integration with respect to quadratic variation is replaced by integration with respect to
Lebesgue measure. In fact it is shown in [2] that this naturally leads to a stochastic determination of
the physical transmission parameter α∗ in terms of a continuity condition on the modified local time of
the stochastic particle motion. This is a probabilistic condition at the particle scale that may be viewed
as an alternative to the usual macro-scale pde condition of continuity of flux in particle concentrations.
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ABSTRACT

Advection and dispersion in highly heterogeneous environments involving interfacial discontinu-
ities in the corresponding drift and dispersion rates are described through disparate examples from the
physical and biological sciences. A mathematical framework is formulated to address specific empirical
phenomena involving first passage time and occupation time functionals observed in relation to the
interfacial parameters.
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