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Introduction

Polyhazard models are a flexible family for fitting lifetime data. Their flexibility comes from

the acknowledgment that there are latent causes of failures. There are many examples of application

of these models in the literature. See, for instance Mazucheli et al. (2001). In all the applications the

latent causes of failure are independent. In this paper we extend the independent polyhazard models

considering dependence modeled by copula functions. The model is general enough to allow for various

form of dependence and also for any marginal distributions of the latent times. The proposed models

are able to generate much more flexible risk functions than the independent polyhazard models,

including features such as bathtub shape, multimodality and local effects.

There is another approach in the literature in order to construct flexible hazard functions when

the distribution is suggested directly. See, for instance Nadarajah et al. (2011). The method proposed

in this paper is more general. For instance, each of these distributions could be used as a marginal

distribution of the latent causes.

The polyhazard model with dependence

Consider the failure time of n independent units of observation with k competing latent causes of

failure acting on each unit and denote by Xij the time to failure of the i-th (i = 1, .., n), observed unit

due to cause j, j = 1, .., k. The distributions of Xij , which depend only on j, denoted by Xij ∼ fj(·)

are considered as known except for unknown parameters. Let λj(·) and Sj(·), respectively the risk

and survival functions, related to time of failure due to cause j. For each unit, only the smallest time,

denoted by Xi, is observed, i.e., Xi = min{Xij , j = 1, .., k}. Thus, considering the independence

among risks, namely, between the failure times Xij , for any i = 1, .., n and j = 1, .., k, the overall

survival function of Xi, denoted by S(t), is given by the product of marginal survival functions, i.e.

(1) S(t) = P [Xi > t] = P [Xi1 >, ..., Xik > t] =

k∏

j=1

Sj(t),

and from the density function of Xi, f(t) = −∂S(t)/∂t, it follows that the hazard function of Xi, λ(t),

is given by the sum of the marginal hazards, because

(2) λ(t) =
−∂

∏k
j=1 Sj(t)/∂t

∏k
j=1 Sj(t)

=
k∑

j=1

λj(t).

From now on we use the notation for k = 2 for simplification, but it can be easily generalized.

Denoting by H(., .) and H̄(., .) the joint distribution and survival functions of the latent variables,

respectively, we can write for the survival function of Xi as S(t) = H̄(t, t). In order to model the joint
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survival function H̄ considering dependence between the latent variables we use copula functions. An

m-dimensional copula function may be defined as a cumulative distribution function whose marginal

distributions are uniform over [0, 1] and whose support is the [0, 1]m hypercube. Copula functions have

been extensively studied in literature for multivariate modeling, especially when the use of multivariate

normal distribution is questionable. An important feature of the copula approach is the possibility of

modeling the dependence and the marginal behavior of the related variates separately, which makes

copula a very convenient alternative of multivariate modeling.

According to the Sklar’s theorem, given an distribution function H(., .) there is always a copula

function C∗ such that H(t1, t2) = C∗(F1(t1), F2(t2)); C∗ is unique if the marginal distributions F1 and

F2 are continuous. C∗ is then called a copula function, because it couples the marginal distributions

F1 e F2 to their joint distribution H. It is possible to represent the joint survival function directly by

H̄(t1, t2) = P [X1 > t1, X2 > t2] = C̃(S1(t1), S2(t2)), where C̃(u, v) = u+v−1+C∗(1−u, 1−v) is also

a copula. On the other hand, for any copula C, C(S1(t1), S2(t2)) is a survival distribution function.

Therefore, we can also model the survival function S directly by a copula function C as was done, for

instance, by Kashiev et al. (2007). This is the approach adopted here because in general it is easier

to work analytically with this representation. Then, for the survival function of the polyhazard model

with dependence we can write

(3) S(t) = H̄(t, t) = C(S1(t), S2(t)),

where C is a copula function and S1 and S2 are, in this paper and in almost all practical applications,

continuous marginal survival functions. The copula C in (3) is called the survival copula, but in this

work we just call them the copula function. Notice that the right (left) tail dependence for the latent

survival times is equal to the left (right) tail dependence of copula C of (3). By the survival function

(3) it follows that the probability density and hazard rate functions for the polyhazard model with

dependence are obtained by the usual way, that is

f(t) = −dS(t)/dt and h(t) = f(t)/S(t).(4)

The proposed model is a generalization of the independent polyhazard model in the sense that allow

for the dependence and at the same time model the marginal behavior of the latent risks. For each

combination of copula and marginal survival functions we have a different model allowing us to con-

struct a rich family of competing risk latent models. For instance, in the following we will work with

exponential, log-logistic, log-normal, Gamma and Weibull distribution for the latent failure causes and

Clayton, Gumbel and copula functions. However, we could work with any distribution and any copula

function. The symmetrized Joe Clayton (SJC) copula is not used in the applications, but it is used as

example in some parts of the paper. These copula are selected because they have been widely used in

the literature and have different type of dependence. Frank copula, with parameter θ ∈ (−∞,+∞),

is a symmetric Archimedean copula with Kendall’s τ ∈ (−1, 1) and Spearman’s ρ ∈ (−1, 1), and

with lower and upper tail dependence λL and λU equal to zero. It can generate distributions with

strong dependence in the center of the distribution but the dependence in the tails are always small.

This means that in the tail the hazard function of the competing risk model will be approximately

equal to the sum of marginal hazard functions. For the Clayton copula, the parameter θ ∈ (0,+∞),

τ = θ/(θ + 2) ∈ [0, 1), ρ ∈ [0, 1), λU = 2−1/θ ∈ (0, 1), and λL = 0. For the Gumbel copula, the

parameter θ ∈ [1, +∞), τ = (θ − 1)/θ ∈ [0, 1), ρ ∈ [0, 1), λU = 0, and λL = 2 − 21/θ ∈ [0, 1). For the

SJC copula λL and λU ∈ [0, 1). This features must be taken into consideration when selecting the

copula function. λL and λU are the dependence between the latent variables.

The Figure 1 illustrates some possible shapes for the Xi distribution for the Frank-Weibull-

Weibull (Frank copula with marginal Weibull distributions) specification, considering Xi1 ∼ W (4; 0.9)

and Xi2 ∼ W (5; 3) and the dependence parameter varying in a range where the Kendall’s τ ranges
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Latent failure time distributions: X1~Weibull(4,0; 0,9), X2~Weibull(5,0; 3,0)
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General failure distribution: Frank, X1~Weibull(4,0; 0,9), X2~Weibull(5,0; 3,0)
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Dependence:
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τ = +0.80

Figure 1: Examples of density, hazard and survival functions for the single risk Weibull model and polyhazard model

with dependence with Frank copula and Weibull marginals.

from -0.80 to 0.80. The figure shows that we can have different shapes for the hazard rates, which

depends on the shapes of the marginal distributions and also of the dependence type. The Figure

2 shows various hazard rate functions for other specifications of the model in which it is possible

to notice local effects, bathtub and multimodal shapes. The two points in the Figure are 99% and

99.9% quartis for each especification and the dependence parameter between the latent variables is

the Kendall’s τ , except for SJC copula were they are the lower and upper tail dependence.

Model Identification and Estimation

Some models are clearly non identified. Take for instance the model Indep-Exp-Exp (indepen-

dent copula with both latent variable with exponential distribution). The overall hazard function is

constant, say λ > 0, and the latent hazard function can be any non negative constant, say λ1 and λ2,

such that λ = λ1 + λ2. An analysis can be less trivial non identified model, Here we explored the non

identification through simulation and numerical analysis. The analysis showed that, except for the

specification Indep-Exp-Exp and Gumbell-Exp-Exp, in every especification there is strong evidence of

identification. A different point, which is estimability is discussed a little more in the next section. A

model being identified does not secure that the parameters can be estimated easily. For instance, when

the overall hazard function is dominated by say the first latent cause, it is very difficult to estimate

the second latent cause, except where there is a large sample.

In the traditional competing risk literature, when the cause of failure is known, there is another
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Figure 2: Examples of hazard rate functions for the polyhazard model with dependence.

type of discussion of identification. See, for instance, Tsiatis (1975). In this classical problem a

competing risk model is identifiable if the joint survival function can be calculated or identified by the

simple knowledge of the marginal survival distributions. Tsiatis (1975) found that, for a model with

dependent risks, it is possible to find a set of independent risks that produces the same joint survival

distribution. It follows that, unless restrictions are imposed to the behavior of the competing risk,

this type of identification is not possible.

The polyhazard models can be seen as a competing risk model with missing values for the cause.

This means that we have less information, and therefore the identification of the equivalent competing

risk model is a necessary but not sufficient condition for the identification of the polyhazard model.

However, even when we have this type of non identification in polyhazard models we can still use these

models in order to model lifetime data and take advantage of the good characteristic of these models.

The model parameters are estimated by the method of maximum likelihood. Considering a

random sample Xi, i = 1, · · · , n, with random right censoring in which δi is the failure indicator

variable and ti the minimum between the failure and censoring, it follows from (3) and (4) that

the likelihood is given by L(Υ) =
∏n

i=1 f(ti; Υ)δiS(ti; Υ)1−δi , where Υ denotes the parameters for

the copula function and the marginal distributions. The algorithm written in R uses Nelder-Mead
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optimization that is performed by several starting points in order to check for possible problem of

local maximum and identification. We did not find any convergence problem in several applications

using both empirical and simulated data.

The analysis of the Hessian matrix shows that for some specifications it is necessary a large

number of observations to have a small variance of the estimator of the copula parameter. This

is particularly true when the difference between the polyhazard model with dependence and the

independent polyhazard model lies in a region with small probability. This is expected because we

need a large number of observations in order to have a reasonable number of observations in the region.

Illustration: Unemployment duration data

We ran some simulations which produced good results but present only the resultd for the

unemployment duration data set, which was previously studied by Wichert and Wilke (2008), where

it was described as: “it is a sample of German administrative individual unemployment duration data.

it is extracted from the IAB-Employment Sample 1975-2001 (IABS-R01) which contains employment

trajectories of about 1.1 million individuals from West-Germany and about 200K individuals from

East-Germany. It is a 2% random sample of the socially insured workforce.” There are two basic

benefits related to unemployment, the unemployment benefit and the unemployment assistance. The

unemployment benefit is granted at the begining of the state of individual’s unemployment, and may

lasts, by the time of the data, from six to 32 months. The benefit has mechanisms to incentivate the

insured individual to return to the job market, for instance, by suspending the benefit for a person

who refuse a job offer that pays a sallary that is compatible with the last job. The unemployment

assistance may be granted right after the end of the unemployment benefit, it has additional criteria

for eligibility, and its value is lower than unemployment benefit and lasts indefinitely in time.

The available information is the duration of the withdrawals of an individual by one of the

benefits or both. Therefore, it is only known the date when an individual began and finished his or her

withdrawals by the unemployment insurance. The end of the benefit may occur due to several causes as

emigration, finding another job or even starting business, but this information is not available. Thus,

we believe that there are risks competing for the end of the unemployment duration of an individual.

We considered as censored when the woman was still unemployed at the end of the observation period,

the year of 2001, or she was unemployed at the end of the benefit duration’s period. Only the 8,109

observations of women in the data set were used. There are 15.8% censored observations.

Table 1 shows the estimates for the best AIC polyhazard models specifications of each copula

fitted to the unemployment data as well as the single risk models and the Figure 3 presents the

estimates of the density, hazard and survival functions. The polyhazard models exhibit a good fit to

the data, which is clearly better than the single risk models fit. The estimated hazard function has

a sharp values at the beginning with a maximum around 1,4 months and decline with a minimum

around one year and four months and increases again. Except for the model with Frank copula the

estimates show a dependence between the latent variables. Independently of the model the estimates

of the density, hazard and survival functions are very close, showing again (observed previously with

simulated data) that the estimation of these function are robust to the model misspecification.

Final remarks

We showed that the dependent polyhazard models is a flexible way of constructing hazard

functions. The use of copulas to model the dependence of the latent factors increased considerably

this flexibility. With this generalized polyhazard models it is possible to construct a rich family of

hazard rate functions with bathtub and multimodal shapes with local effects. The proposed model
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Figure 3: Density, hazard and survival functions of the models fitted to the women unemployment

data. Polyhazard models of Table3.

Table 1: Summary of the models fitted to the Unemployment Data. Single risk models and selected polyhazard models. For

each copula it is only presented the specification selected by the AIC criterion.

Model AIC τ = 0.90 θ Par-Marg1 Par-Marg2

Clayton-lnor-gam -20429.48 0.75 5.90 0.24 1.62 1.45 1.31

(0.79) (0.043) (0.030) (0.060) (0.048)

indep-lnor-lnor -20434.62 0.13 1.65 1.33 0.48

(0.024) (0.022) (0.021) (0.018)

Gumbel-lnor-lnor -20436.03 0.53 2.14 0.13 1.65 0.85 0.55

(1.68) (0.024) (0.022) (0.37) (0.10)

Frank-lnor-lnor -20436.46 -0.05 -0.43 0.13 1.65 1.38 0.49

(1.15) (0.024) (0.021) (0.14) (0.037)

-Wei- -20822.76 1.66 0.92

(0.022) (0.009)

-gam- -20832.89 0.88 1.95

(0.013) (0.04)

-exp- -20906.22 1.70

(0.021)

-lnor- -21170.94 -0.08 1.40

(0.016) (0.012)

-llog- -21333.81 0.99 1.23

(0.016) (0.012)

was applied to simulated data and to unemployment duration resulting in the presence of competing

risks. Even when it is not possible to infer for the latent times due to the identification issue resulting

of the lack of information of the cause of failure, the proposed model has a structure that allows to

impose restrictions in the type of dependence, i.e., negative, positive or tail dependence, and also

allows to associate covariates directly to the behavior of the latent times.
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