
Gene coancestry in pedigrees and populations

Thompson, Elizabeth

University of Washington, Department of Statistics Box 354322

Seattle, WA 98115-4322, USA

E-mail: eathomp@uw.edu

Glazner, Chris

University of Washington, Department of Statistics Box 354322

Seattle, WA 98115-4322, USA

E-mail: cglazner@uw.edu

1. Introduction

Related individuals share common ancestors, and hence may carry DNA that is identical by

descent (ibd) from these ancestors. With high probability, ibd DNA is of the same allelic type, leading

to trait similarities among relatives. Classically, data on known relatives are used to map the genes

underlying genetically mediated traits, and the prior probabilities of ibd are then given by the pedigree

structure. However, pedigree data are expensive and difficult to collect, and the limited number

of meioses within a set of known pedigrees leads to a lack of resolution in gene mapping. When

pedigrees are ascertained for extreme trait values or from small populations, there are likely to be

unknown relationships among the founder members of the same or of different pedigrees. Modern dense

informative genetic marker data permit inference of ibd resulting from these unknown relationships,

and this inferred ibd may be combined with ibd imputed within pedigrees to increase both the power

and the resolution of mapping of genes contributing to complex quantitative traits.

In this paper, we consider first the analysis of data within pedigrees, in terms of the ibd graph.

This graph, defined among observed individuals and across the genome, specifies the segments of

genome shared ibd among these individuals. Once the ibd graph is known, analyses of trait data may

be carried out conditionally on the graph, and the pedigree relationships and genetic marker data are

no longer relevant. We then show how ibd resulting from unknown more remote relationships can be

estimated using a population-genetic based ibd model. Merging of the ibd graphs inferred within and

among pedigrees provides a combined ibd graph, which may be used for trait-data analyses.

We illustrate these methods with a small simulated-data example. We first examine the effect

of genetic marker density on the inference of ibd in an extended pedigree. We then remove knowl-

edge of some ancestors to create small subpedigrees, and analyze the ibd within and between these

subpedigrees. Using the subpedigrees alone, linkage information is lost, but it is almost fully regained

by inference of ibd among the subpedigrees. Software implementing these methods is available in the

MORGAN-3 package (MORGAN V3.0.1 2010).

2. Pedigree-based lod score as a function of coancestry

Given a genetic model, Γ, for genetic marker data YM and trait data YT , the classical statistic

for mapping DNA contributing to a trait relative to a known map of genetic markers is the lod score:

log10
Pr(YT ,YM ; Γ)

Pr(YT ,YM ; Γ0)
= log10

Pr(YT ,YM ; Γ)

Pr(YT ; ΓT )Pr(YM ; ΓM )
= log10

Pr(YT | YM ; Γ)

Pr(YT ; ΓT )
,

where Γ0 = (ΓT ,ΓM ) is Γ without dependence in inheritance of DNA affecting YT and DNA affecting

YM . On an extended pedigree, the term Pr(YT | YM ; Γ) can be computationally intractable, but can
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be estimated as a sum over latent variables S which specify the inheritance at all marker locations:

Pr(YT | YM ; Γ) =
∑

S

Pr(YT | S; ΓT )Pr(S | YM ; ΓM ),(1)

since, given S, YT and YM are independent. One-time realization of a sample of S then permits

the estimation of the lod score for multiple hypothesized trait locations, multiple trait models, and

even multiple traits observed on the same pedigree structures (Lange and Sobel 1991). Newer MCMC

sampling methods permit effective realization of S on large pedigree datasets for multiple closely

linked markers (Tong and Thompson 2008; Thompson 2011a). These methods are implemented in the

MORGAN program lm multiple.

The ibd graph specifies patterns of identity by descent (ibd) among individuals and across a

chromosome. At a locus, the edges of the ibd graph are labelled by the individuals observed for the

trait or by their trait values. Edges connect two nodes which correspond to the two haploid genomes

descending to the individual. Two different edges impinging on a node indicate genome shared ibd at

this locus by the corresponding individuals. If the two genomes of an individual are ibd at a locus, both

ends of his edge connect to a single node. Thus the nodes of the ibd graph are intrinsically unlabelled,

showing only ibd among individuals. Nodes are defined only through the edges that impinge upon

them (Thompson 2011b).

At genetic marker locations, the ibd graph is a function of S. The probability of trait data

YT depends on S only through the ibd graph. Instead of computing the lod score contribution for

each realized S, the MORGAN program gl auto samples S but converts each scored realization to

an ibd graph. A sample of ibd graphs may be stored in compact format; only change-points across a

chromosome are stored. The MORGAN program gl lods then computes lod score contributions for each

stored ibd graph. For modern dense informative marker data, and where complex phenotypes often

provide little information on inheritance, the one-time analysis of marker data has clear computational

advantages, permitting easy analysis of many trait models and many trait phenotypes. There are also

data-security advantages; the gl auto program requires only pedigree information, marker data, and

marker model. Once the ibd graphs are sampled, the pedigree structure and marker data are no longer

relevant. The gl lods program requires only the ibd graphs, trait data, and trait model.

Use of the sampled ibd graphs for the computation of trait-model lod score contributions has

other significant computational advantages. First, computation on the ibd graph of observed indi-

viduals is often significantly faster than computation on a pedigree using S. Particularly when few

individuals are observed, the disjoint components of the ibd graph tend to be much smaller than the

pedigree graph. More importantly, many realizations of S may be the same and many distinct values

of S give the same unlabelled ibd graph. In a pedigree, recombination breakpoints are relatively few,

and realized ibd graphs remain constant over many markers. Recognizing when ibd graphs are the

same is key to efficient computation, since lod score computations need be computed only for each

distinct graph. Software to recognize ibd-graph equivalence has been implemented in the IBDgraph

package (Koepke and Thompson 2010), and can reduce the lod-score component of computation by

orders of magnitude (Thompson 2011b).

3. Inferring coancestry among pedigrees

When relationships between individuals are not known, ibd can be inferred using a Hidden

Markov Model, which we implement in the MORGAN program ibd haplo. The hidden states of the

model are the possible ibd patterns among two individuals and form a Markov chain as described in

Thompson (2008, 2009). The transition matrix is parametrized by the expected degree of relatedness

among the individuals and the expected length of ibd segments, both of which are derived from

attributes of the population containing the individuals. The hidden states emit observed alleles in
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accordance with population allele frequencies; ibd chromosomes will emit the same allele in the absence

of measurement error, while non-ibd alleles are modeled as random draws from the population.

Studies using simulated haplotypes showed the model detected nearly all ibd segments longer

than 1 Mbp (Glazner et al. 2010). Linkage disequilibrium (LD) in the founder population created

many short segments of detected ibd. Because LD is itself a reflection of coancestry more recent than

the time required to break down haplotypes, these segments can be interpreted as a form of ibd sharing.

The ibd detected in this manner can be used to recover unobserved coancestry among individuals

in different pedigrees. A set of families drawn from the same population is likely to have some shared

ancestry, but pedigrees reflecting these relationships will typically be far larger and deeper than can be

realistically observed. The ibd haplo model infers the ibd produced by these unobserved relationships.

To combine a set of MCMC realizations of the ibd graphs on a pair of pedigrees, ibd haplo is

first run on the genotypes of every possible pairing of individuals between the two pedigrees. This

produces, at each locus and for each pair, the marginal probability that the two individuals are in any

of 9 possible ibd states at that locus. The most probable ibd state from each pair is selected, and the

pairs are ranked according to the probability of the most probable state.

Given an ibd-graph realization, these states can be translated into statements about pairs of

founder haplotypes (nodes in the ibd graph) being ibd. For example, suppose two individuals carry

founder labels {1,2} and {7,8}, respectively, in a particular pair of ibd graphs. If we infer from ibd haplo

that they share one allele ibd, then we conclude that one of the four possible pairings 1-7, 1-8, 2-7, or

2-8 must be a pair of labels which are ibd.

The (ambiguous) founder label statements implied by each pair’s state are successively added,

in order of probability, to a collection of statements whose consistency is checked at each step using

the MiniSat program. (Eén and Sörensson 2003) If the addition of a set of statements conflicts with

the previously included statements, then that set of statements is excluded. In this manner more

probable inferences are given priority over less probable ones. When all sets of statements have been

tried, the program produces a consistent solution to the set of included statements, which corresponds

to the presence or absence of pairings between founder labels in the two ibd graphs. The nodes whose

labels are paired are then combined in the two graphs, creating a new, possibly connected graph.

Cousinship A

Cousinship B Cousinship C

Figure 1: The Ped44 example pedigree.

The 22 dark-shaded, last-generation,

individuals are observed for trait and

marker data. To create the three

cousinships, the 4 unshaded ancestors

are removed. To create the six sibships,

the light-shaded grandparents of the ob-

served individuals are also removed.

4. The Ped44 example; missing pedigree information

As an illustrative example, we describe results for simulated data on a single 44-member pedigree,

Ped44 (Figure 1). A locus affecting a quantitative trait was placed at the centre of a 100 Mbp

chromosome, and descent of genome over the chromosome was simulated conditional on the trait data,

using the MORGAN markerdrop program. Three marker data sets were then simulated, conditional

on the single descent pattern; 51 SNP markers at 2 Mbp spacing, 13 STR markers at 7.5 Mbp spacing,
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and 201 SNPs at 0.5 Mbp spacing. Only the 22 final individuals of the pedigree were assumed observed

for marker and trait data (Figure 1).

We first considered the lod scores assuming the whole Ped44 to be known. Lod scores were

estimated using the MORGAN lm multiple program, with sampling for 30,000 MCMC scans, and

scores realized every 30 scans. While the overall lod scores do not differ greatly among the three marker

densities (Figure 2(a)), the 1000 MCMC-generated contributions to the overall score (equation (1))

(shown in grey in Figure 2) show different patterns. With only 51 SNPs, there is very high uncertainty

in latent ibd, as reflected in highly variable lod score contributions (Figure 2(b)). With the more widely

spaced but individually more informative STR markers, uncertainty is reduced, but resolution is poor

(Figure 2(c)). With 201 SNPs, we have low uncertainty and high resolution (Figure 2(d)). Since

the data are simulated, we in fact know the lod score that would be found were the true ibd on this

pedigree known. This lod score is shown in Figure 2(e), and the 201-SNP lod score follows it closely.

These results show also that the MCMC methods of Tong and Thompson (2008) work well at this 0.5

Mbp scale on this extended pedigree with no observed data on 50% of the individuals.

While reduction using IBDgraph (Koepke and Thompson 2010) was not used for this small

example, it was verified that identical results were obtained when lod score contributions were com-

puted on the basis of ibd graphs generated with the same MCMC sampling options by the MORGAN

gl auto program. Further, running IBDgraph on these ibd graphs showed that at the 50 Mbp position,

the 1000 realizations for the three marker datasets generate only 265, 70 and 5 distinct ibd graphs,

with the size of the largest group being 51, 495, and 996, respectively. For the 201 SNP dataset, the

number of realizations in the largest group averages 932 over the 30 markers from 42 to 57 Mbp, with

many of these ibd graphs remaining unchanged across these 30 markers. Clearly, computing lod score

contributions only for distinct ibd graphs would greatly reduce gl lods computation time.

Using only the 201-SNP dataset, we next show the result of missing pedigree information.

Using first the 3 subpedigrees consisting of cousin-pairs of sibships in Ped44, and then the 6 sibships

separately, we computed lod scores, and summed these over the cousinship or sibship families, as would

be done if the relationships among the families were unknown. The results for the 1000 realizations

for the 3 cousinships are shown in Figure 2(f), and the total lod scores in Figure 2(g). (For the

sibships, no MCMC is needed, and exact lod scores are computed.) Clearly, the sibships alone contain

little information, but the ibd between the two sibships in each cousinship does provide some linkage

evidence. With two major exceptions, the sum of the 3 cousinships shows lod score contributions very

similar to the overall one (Figure 2(d)), and with slightly less variation among the 1000 realizations.

First the lod score in the neighborhood of the trait locus (45-55 Mbp) is significantly reduced. Second,

the lod score at 75-85 Mbp is quite high, whereas the overall result and that for the true latent ibd

(Figure 2(e)) are close to 0 in this region. This result accords with the recognition that over much

of the chromosome there is in fact no ibd among the 3 cousinships. However, at 45-55 Mbp there is

ibd that is concordant with trait values, while at 75-85 Mbp there is ibd that is discordant with trait

similarities among individuals.

Finally, we run the MORGAN ibd haplo program on all pairs of individuals in Cousinships A

and B; note these are not the two most closely related cousinships, but, by chance, they have more

genome shared ibd. The IBDmerge software is then run to produce 1000 ibd graphs that combine the

gl auto results on the cousinships with the additional ibd inferred by ibd haplo. The resulting lod score

contributions and overall lod score are shown in Figure 2(h), with the overall value also in Figure 2(g).

We see that this procedure has almost fully recaptured the information in the full Ped44. In particular,

the high lod score at 45-55 Mbp is regained, and the false signal at 75-85 Mbp is eliminated. Thus

our procedures, for combining ibd inferred among families not known to be related with the descent

patterns within families used in classical linkage analysis, show significant promise both for increasing

the possibilities of linkage detection and for eliminating false positive signals.
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(b) 1000 lod contributions on dataset 51 SNPs
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(c) 1000 lod contributions on dataset 13 STR
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(d) 1000 lod contributions on dataset 201 SNPs
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(e) Lod score for the true ibd
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(f) Sum of 3 cousinship lods
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(g) Lod scores for different ibd scenarios
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(h) Lods after merging 2 cousinships

Figure 2: Uncertainty in pedigree-based lod scores: (a) Lod scores at three marker den-

sities, (b,c,d) Full Ped44 lod contributions at three marker densities, (e) True Ped44 lod

score, (f) Lod contributions on 3 cousinships, (g) Lod scores with the four inferred ibd

scenarios. (h) Lod contributions after inferring ibd between 2 cousinships
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5. Discussion

Lod scores for genetic linkage analysis may be computed on the basis of the ibd graph, and, for

this purpose, it is irrelevant whether this ibd is inferred using known pedigree relationships or from a

population model, or from a combination of the two. Our example shows how merging ibd inferred

among small pedigrees with the ibd inferred within these pedigrees can recover the linkage signal that

would be obtained were the relationships among pedigrees known.

In our small Ped44 example, we used the same genetic markers for ibd inference both between and

within pedigrees, and lod scores were computed at all marker locations. The density of markers for ibd

inference is unrelated to the often lesser density at which lod score computation is desired. Lod scores

may be computed at any location at which ibd is realized conditional on chromosome-wide marker

data and merged among pedigrees. For real examples, with remote unknown relationships among

pedigrees, marker densities for between- and within-pedigree ibd realization should differ. Within

pedigrees, markers at an average spacing of 0.5 Mbp work well. For remote relationships among

pedigrees, dense SNP markers (for example, 50 per Mbp) are required for reliable detection of ibd

segments as small as 1 Mbp. The uncertainty of the lod score based on merged ibd at 73 to 77 Mbp

(Figure 2(h)) results from discrepancies among single markers at the 0.5 Mbp spacing.

In practice, SNP data are often available at the 50 per Mbp scale. For pedigree-based analyses,

markers at an average 0.5 Mbp spacing and exhibiting highest counts of heterozygous individuals in

the pedigrees can be subselected. At this scale, potential problems due to LD are avoided. MORGAN

programs have been modified so that output information, including ibd graphs, is given in terms of

the marker indexing in the input file, not in terms of only the selected markers. This makes practical

the merging of dense-marker ibd haplo results with those of the pedigree-based gl auto program.
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