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Result

We describe a central limit theorem for the sum Sn =
∑n

i=1Xi, Xi ∈ Rp, where the Xi’s can be

approximated by weakly dependent variables. The proof is for i ∈ Z, but can be directly generalized

to the case of a random field, i ∈ Zd. The weak dependency is formulated through a set of σ-algebras,

Dj , j ∈ Z. The strong mixing coefficients of these are α(k, l, d) = sup
∣∣P (A1 ∩ A2) − P (A1)P (A2)

∣∣,
where the supremum is taken over sets Ai ∈ σ

(
Dj : j ∈ Ii

)
, i = 1, 2, with |I1| ≤ k, |I2| ≤ l, and

the distance d(I1, I2) between the two sets I1 and I2 is at least d. The central limit theorem has

applications in the study of nonhomogeneous hidden Markov chains (Jensen 2005).

Theorem 1. Assume that there exist δ0, ε0 > 0, δ1, δ2 ≥ 0, θ > δ1 + δ2 + max
{

(2 + δ0)/δ0, 1 + δ2, 2
}

and constants c0, c1, c2 such that

EXi = 0, E|Xi|2+δ0 ≤ c0, Var(a · Sn) ≥ ε0n|a| ∀a ∈ Rp(1)

α(k, l, d) ≤ c1kδ1 lδ2 max{1, d}−θ,(2)

∀ m ∈ N ∃Xm
j ∈ σ

(
Dk : d(k, j) ≤ m

)
: E

∣∣Xj −Xm
j

∣∣ ≤ c2m−θ.(3)

Then we have that Var(Sn)−1/2Sn→̃Np(0, I) for n→∞.

(For the case of a random field, Xi, i ∈ Zν , the lower bound on θ is multiplied by ν.) We divide

the proof into a number of subsections. In the first two subsections we use truncation to reduce the

problem to that of bounded variables. In the last section the method of Bolthausen (1982) is used for

the bounded variables.

Truncation

We use the trunctation function TM where TM (x) equals x for |x| ≤M and equals Mx/|x| otherwise.

Let QM (x) = x− TM (x). Using that EXj = 0 we write the sum Sn as Sn = S′n + S′′N , with

(4) S′n =

n∑
j=1

[
TM (Xj)− E(TM (Xj))

]
and S′′n =

n∑
j=1

[
QM (Xj)− E(QM (Xj))

]
,

and the idea is to prove that a CLT for S′n for any fixed M implies a CLT for Sn.

In the lemma below we consider fixed values of j, k and fixed unit vectors aj and ak. We define

U = aj ·Xj , UM = aj · TM (Xj) and ÛM = aj · QM (Xj), and define V , VM and V̂M similarly with j

replaced by k.

Lemma 2. There exists a constant c3, depending on c1, c2, δ0 and θ only, such that

Cov(U, V ) ≤ c3
[
c
1/(2+δ0)
0 + c

2/(2+δ0)
0

]
max

{
1, d(j, k)

}−κ
,

where κ = (θ − δ1 − δ2)δ0/(2 + δ0) > 1.

Proof. Following Deo (1973) we expand Cov(U, V ) = Cov
(
UM + ÛM , VM + V̂M

)
into four terms and

bound each of these. Thus, using the simple bound
∣∣QM (x)

∣∣ ≤ (|x|/M)1+δ0 |x| we find∣∣Cov
(
UM , V̂M

)∣∣ ≤ 2ME
∣∣V̂M ∣∣ ≤ 2Mc0/M

1+δ0 = 2c0/M
δ0 .
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Similarly,
∣∣Cov

(
ÛM , VM

)∣∣ ≤ 2c0/M
δ
0 , and∣∣Cov

(
ÛM , V̂M

)∣∣ ≤ {Var(ÛM ) Var(V̂M )
}1/2 ≤ c0/M δ0 ,

since EÛ2
M ≤ E

∣∣Xj

∣∣2+δ0/M δ0 . To bound Cov
(
UM , VM

)
we define UmM = aj · TM

(
Xm
j

)
and V m

M =

ak · TM (Xm
k ). Since

∣∣TM (Xj)− TM (Xm
j )
∣∣ ≤ ∣∣Xj −Xm

j

∣∣ we find∣∣Cov
(
UM − UmM , VM

)∣∣ ≤ 2ME
∣∣UM − UmM ∣∣ ≤ 2c2Mm−θ,

∣∣Cov
(
UmM , VM − V m

M

)∣∣ ≤ 2c2Mm−θ,

and therefore
∣∣Cov(UM , VM )

∣∣ ≤ ∣∣Cov(UmM , V
m
M )
∣∣ + 4c2Mm−θ. Finally, we use the classical bound

(Ibragimov and Linnik, 1971 [17.2.1])
∣∣Cov(UmM , V

m
M )
∣∣ ≤ 4M2α

(
2m+ 1, 2m+ 1,max{0, d(j, k)−2m}

)
.

Putting all the terms together we obtain∣∣Cov(U, V )
∣∣ ≤ 5c0/M

δ0 + 4c2Mm−θ + 4c1M
2(2m+ 1)δ1+δ2 max

{
1, d(j, k)− 2m

}−θ
.

Choosing m = bd(j, k)/3c and M = c
1/(2+δ0)
0 d(j, k)κ/δ0 we get the result of the lemma.

Lemma 3. Let S′′n be defined in (4). There exists a function b(M) with b(M)→ 0 for M →∞ such

that for all unit vectors a and for all n we have Var
(
a · S′′n

)
/n ≤ b(M).

Proof. We use Lemma 2 with the random variable X replaced by Z = QM (X)−E(QM (X)). Let 0 <

ξ < δ0 be so large that κ1 = (θ−δ1−δ2)ξ/(2+ ξ) > 1. Remembering the simple inequality
∣∣QM (x)

∣∣ ≤(
|x|/M

)α|x| we have
∣∣ETM (Xi)

∣∣ =
∣∣EQM (Xi)

∣∣ ≤ c0/M
1+δ0 and E

∣∣QM (Xi)
∣∣2+ξ ≤ c0/M

δ0−ξ. Thus,

replacing δ0 by ξ we use the bound

E
∣∣Zi∣∣2+ξ ≤ 21+ξ

{
E
∣∣QM (Xi)

∣∣2+ξ +
∣∣EQM (Xi)

∣∣2+ξ}
≤ 21+ξ

{(
c0/M

δ0−ξ)+
(
c0/M

1+δ0
)2+ξ}

= c0(M, ξ).(5)

Furthermore, we can approximate Z by QM (Xm)− E(QM (X)) with a mean error

E
∣∣QM (X)−QM (Xm)

∣∣ ≤ E∣∣X −Xm
∣∣+ E

∣∣TM (X)− TM (Xm)
∣∣

≤ 2E
∣∣X −Xm

∣∣ ≤ 2c2m
−θ.

We can now use Lemma 2 with δ0 replaced by ξ, c0 replaced by c0(M, ξ) and c2 replaced by 2c2. For

some constant c̃3 and any unit vector a we then have

Cov
(
a ·QM (Xj), a ·QM (Xk)

)
≤ c̃3b̃(M) max

{
1, d(j, k)

}−κ1 ,
where b̃(M) = c0(M, ξ)1/(2+ξ) + c0(M, ξ)2/(2+ξ). Writing Var(S′′N ) as a double sum of covariances we

find the result of the lemma with b(M) = c̃3b̃(M)[3 + 2/(κ1− 1)]. From (5) we see that c0(M, ξ) tends

to zero, and therefore b(M) tends to zero as M tends to infinity.

Variance

Writing Var(a·Sn) as a double sum of covariances we get directly from Lemma 2 the bound Var(a·Sn) ≤
c4n with c4 = c3

[
c
1/(2+δ0)
0 + c

2/(2+δ0)
0

]
[3 + 2/(κ− 1)].

From Lemma 3 we find∣∣Var
(
a · Sn/

√
n
)
−Var

(
a · S′n/

√
n
)∣∣ ≤ 2

∣∣Cov
(
a · Sn/

√
n, a · S′′n/

√
n
)∣∣+ Var

(
a · S′′n/

√
n
)

≤ 2
√
c4b(M) + b(M)→ 0 for M →∞.
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The assumption of a lower bound on the variance of Sn/
√
n in Theorem 1 therefore gives that

(6) Var
(
a · Sn/

√
n
)
/Var

(
a · S′n/

√
n
)
→ 1 for M →∞.

As in Ibragimov and Linnik (1971, page 346) we have from Lemma 3 and (6) that it suffices to prove

a CLT for S′n for fixed M to obtain a CLT for Sn.

Proof of central limit theorem for S′n

Let a be a fixed unit vector and define Yi = a ·
(
TM (Xi)− ETM (Xi)

)
and S̃n =

∑n
i=1 Yi = a · S′n.

We saw in the proof of Lemma 3 that
∣∣ETM (Xi)

∣∣ ≤ c0/M
1+δ0 so that for M sufficiently large

we have |Yi| ≤ M + 1. Furthermore, if we set Y m
i = TM (Xm

i ) − ETM (Xi) we have E
∣∣Yi − Y m

i

∣∣ ≤
E
∣∣Xi −Xm

i

∣∣ ≤ c2m−θ and
∣∣Y m
i

∣∣ ≤M + 1.

We will use the method of proof from Bolthausen (1982). For this we need the following esti-

mates.

Lemma 4. There exists a constant c4 such that

Cov
(
Yj , Yk

)
≤ c4(M+1)2 max{1, d(j, k)}−γ , Cov

(
YjYk, YrYs

)
≤ c4(M+1)4 max

{
1, d({j, k}, {r, s})

}−γ
,

and Cov
(
Yj , YkYrYs

)
≤ c4(M + 1)4 max

{
1, d(j, {k, r, s

}
)}−γ, where γ = θ − δ1 − δ2.

Proof. The proof is based on successively replacing Yi by Y m
i in the mean of a product of Y ’s. Thus,

using the second inequality as an example,
∣∣E(YjYkYrYs) − E(Y m

j Y m
k Y m

r Y m
s )
∣∣ ≤ 4(M + 1)3c2m

−θ.

From inequalities of this form we obtain∣∣Cov(YjYk, YrYs)− Cov(Y m
j Y m

k , Y m
r Y m

s )
∣∣ ≤ 2 · 4(M + 1)3c2m

−θ.

Next, the strong mixing implies (Ibragimov and Linnik, 1971 [17.2.1])∣∣Cov(Y m
j Y m

k , Y m
r Y m

s )
∣∣ ≤ 4(M + 1)4c1[2(2m+ 1)]δ1+δ2 max

{
1, d({j, k}, {r, s

}
)− 2m}−θ.

Combining the two inequalities and taking m = bd({j, k}, {r, s})/4c we obtain the second inequality

of the lemma.

For a number r we introduce the notation

Si,n =

n∑
j=1,d(i,j)≤r

Yj and αn =

n∑
i=1

E(YiSi,n),

where eventually r will be tending to infinity with n. From Lemma 4 we find that

Var
(
S̃n/
√
n
)
− αn

n
=

1

n

n∑
i=1

n∑
j=1,d(i,j)>r

Cov(Yi, Yj) ≤
4c4(M + 1)2

(γ − 1)rγ−1
,

where γ − 1 = θ − δ1 − δ2 − 1 > 0. Now, consider the case r = nω, with ω > 0. Then the right hand

side above tends to zero. Since also we have from (6) that Var(S̃n) is of the same order as Var(Sn),

and we have assumed the lower bound ε0n for the latter, we find that αn has a similar lower bound

and Var(S̃n)/αn → 1. We must therefore show that S̄n = S̃n/
√
αn converges to a standard normal

distribution.

Proof of CLT for S̄n We follow the proof of Bolthausen (1982), where the definitions of A1, A2

and A3 below can be found. These terms depend on the argument t of the characteristic function for
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S̄n. One needs to show that E
(
A1 − A2 − A3

)
→ 0. Using the expression in Bolthausen (1982) and

Lemma 4 we have with Jr = {1 ≤ i, i′, j, j′ ≤ n : d(i, j) ≤ r, d(i′, j′) ≤ r},

E
∣∣A1

∣∣2 =
t2

α2
n

∑
Jr

Cov(YiYj , Yi′Yj′)

=
t2

α2
n

{ ∑
Jr,d(i,i′)≥3r

Cov(YiYj , Yi′Yj′) +
∑

Jr,d(i,i′)<3r

Cov(YiYj , Yi′Yj′)
}

≤ c4t
2(M + 1)4

α2
n

{
n(2r + 1)22

∞∑
k=3r

(k − 2r)−γ + n(2r + 1) · 8 · 6r
(
1 +

3r∑
j=1

j−γ
)}

= O
(
t2(M + 1)4r2/n

)
= O

(
t2(M + 1)4/n1−2ω

)
,(7)

where the last expression follows upon taking r = nω. For the A2 term we have from Bolthausen

(1982) and Lemma 4

E
∣∣A2

∣∣ ≤ nt2(M + 1)

α
3/2
n

max
i

n∑
j,k=1,d(i,j)≤r,d(i,k)≤r

Cov(Yj , Yk)

≤ c4nt
2(M + 1)3

α
3/2
n

(2r + 1)
{

1 + 2

2r+1∑
j=1

j−γ
}

= O
(
t2(M + 1)3/n

1
2
−ω).(8)

Finally, we need to consider A3 = α
−1/2
n

∑n
i=1 Yi exp

{
it(S̄n − S̄i,n)

}
, where S̄i,n = Si,n/

√
αn. Consid-

ering the exponential part, and replacing all the variables by the approximating variables Y m
j , we see

that

E
∣∣exp

{
it(S̄n − S̄i,n)

}
− exp

{
it(S̄mn − S̄mi,n)

}∣∣ ≤ |t|
√
αn
E
∣∣(S̃n − Si,n)− (S̃mn − Smi,n)

∣∣ ≤ |t|
√
αn
nc2m

−θ.

Using this we obtain∣∣Cov
(
Yi, exp{it(S̄n − S̄i,n)}

)
− Cov

(
Y m
i , exp{it(S̄mn − S̄mi,n)}

)∣∣ ≤ c2m−θ + (M + 1)
|t|
√
αn
nc2m

−θ.

From the mixing we have (Ibragimov and Linnik, 1971 [17.2.1])∣∣Cov
(
Y m
i , exp{it(S̄mn − S̄mi,n

)
})
∣∣ ≤ 4(M + 1)c1(2m+ 1)δ1nδ2(r − 2m)−θ.

Taking m = r/3 and combining the two bounds we find for some constant c5∣∣Cov
(
Yi, exp{it(S̄n − S̄i,n)}

)∣∣ ≤ c5{(M + 1)nδ2r−θ+δ1 + r−θ[1 + (M + 1)|t|n/
√
αn]
}
.

Since EYi = 0 the terms in A3 are covariances, and taking r = nω we therefore have the bound

(9)
∣∣EA3

∣∣ = O
(
(M + 1)[n−ωθ+1 + n−ω(θ−δ1)+δ2+

1
2 ]
)
.

Thus, if we choose ω such that ω < 1
2 , ωθ − 1 > 0 and ω(θ − δ1)− δ2 − 1

2 > 0, which is possible from

the assumption on θ in Theorem 1, we see that all of (7), (8), and (9) tend to zero.
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