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1 Introduction

The log tranformation is one of the most commonly used when analyzing skewed data to make them
approximately normal. In this paper we consider Bayesian inference on the expected value and other
moments and measures of central tendency in the log-normal model. Suppose that a random variable
X with mean ξ and variance σ2 is normally distributed, such that exp(X) ∼ LogN(ξ, σ2). Let’s
consider functionals of (ξ, σ2) of the form θa,b = exp(aξ+bσ2) with a, b ∈ < based on a random sample
(X1, . . . , Xn). We may obtain the mean, the median, the mode and various non-central moments of
the log-normal distribution for different choices of a, b. More specifically a = 1 and b = 0 yields the
median (θ1,0), a = 1 and b = −1 yields the mode (θ1,−1) and a = 1 and b = .5 yields the mean (θ1,0.5).

In the Bayesian literature, an important reference is Zellner (1971). He considers diffuse priors of
the type p(ξ, σ) ∝ σ−1 and shows, for the log-normal median, that p(θ1,0|data) is a log-t distribution.
Summarizing the log-t distribution is challenging using popular loss functions, such as the quadratic,
because moments of all orders do not exist. Similarly, for the log-normal mean Zellner (1971) shows
that p(θ1,0.5|data) follows a distribution without finite moments.

Moreover, considering inference conditional on σ, Zellner (1971) notes that, within the class of
estimators of the form k exp(X̄) with X̄ = n−1

∑n
i=1Xi and where k a is constant, the estimator for

θ1,0.5 with minimum mean square error (MSE) is given by θ̆1,0.5 = exp(X̄ + σ2/2 − 3σ2/2n). From
a Bayesian point of view, this estimator may be justified as the minimizer of the posterior expected
loss, provided that the relative quadratic loss function LRQ = [(θ − θ̂)/θ]2 is adopted.

Another important reference is Rukhin (1986). Rukhin proposes the following ’generalized’
prior: p(ξ, σ) = p(σ) ∝ σ−2ν+n−2 exp

(
−σ2

[
γ2/2−2

(
b−a2/n

)])
, with γ2 > 4(b−a2/n). Assuming the

relative quadratic loss function LRQ, he obtains an estimator for θa,b of the form θ̂Rua,b = exp(aX̄)g(Y )
that is given by

(1) θ̂Rua,b = exp(aX̄)

(
β

γ

)ν
Kν(βY )
Kν(γY )

,

β = γ2−2c, c = b−3a2/(2n) and Kν( ) is the modified Bessel function of the third kind (the Bessel-K
function from now on). For a general introduction to Bessel functions, see Abramowitz and Stegun
(1968), chapters 9 and 10. To obtain the values for the hyperparameters ν, γ, Rukhin (1986) chooses
to minimize the frequentist MSE of θ̂Rua,b . As the Kν( ) are quite difficult to handle, Rukhin uses a ’small
arguments’ approximation to θ̂Rua,b to propose a value for ν and a ’large arguments’ approximation to
propose a value for γ. Rukhin does not recognize that, with a simple change of variable, the prior he
proposes may be seen as the product of a flat prior over the real line for ξ and the following prior on
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σ2 p(σ2) ∝ (σ2)−ν+n/2−3/2 exp(−σ2[ψ2/2 − 2
(
b − a2/n)]) which is the limit of a generalized inverse

gamma distribution, GIG(λ, δ, γ) as δ → 0. The other parameters are given by λ = −ν + n/2 − 1/2
and γ2 = ψ2/2 − 2(b − a2/n) (see section 2 for more details and notation). He does not provide the
posterior distribution, so his proposal is inadequate for many inferential purposes (i.e., calculating of
posterior variances or posterior probability intervals).

In this paper, we derive the posterior distribution of θa,b assuming a proper generalized inverse
gamma prior on σ2 (and a flat prior over the real line for ξ). We show that this posterior is a log-
generalized hyperbolic distribution and state the conditions on the hyperparameters that guarantee
the existence of posterior moments of a given order. Once these conditions are met for the first
two non-central moments, we discuss the Bayes estimators with the ordinary quadratic loss function
LQ = (θ − θ̂)2. Moreover, we show that, given our choice of the prior distributions, Bayes estimators
associated with the relative quadratic loss function LRQ can be reconducted to posterior expectations
provided that b is properly modified. Adopting a ‘small arguments’ approximation to the Bessel-K
functions we propose a choice of the hyparameters aimed at minimizing the MSE. We show using
simulation that our Bayes estimator of the mean, i.e. θ1,0.5 is substantially equivalent to the estimator
proposed in Shen et al. (2006), which has been proven to be superior to many of the alternatives
previously proposed in the literature.

The paper is organized as follows. In Section 2 we briefly present the generalized inverse Gaussian
and generalized hyperbolic distributions. In Section 3, posterior distributions for σ2 and θa,b are
derived, and Bayes estimators under quadratic and relative quadratic losses are introduced. Section
4 is devoted to the choice of values to be assigned to the hyperparameters in order to obtain Bayes
estimators with the minimum frequentist MSE. Section 5 offers some conclusions and outlines the
results of simulation exercises not reported here for brevity.

2 The generalized inverse Gaussian and generalized hyperbolic dis-

tributions

In this section we briefly introduce the generalized inverse Gaussian (GIG) and generalized hyperbolic
(GH) distributions, establish the notation and mention some key properties that will be used later. For
more details on these distributions, see Bibby and Sørensen (2003) and Eberlein and von Hammerstein
(2004) among others.

The density of the GIG distribution may be written as follows:

(2) p(x) =
(γ
δ

)λ 1
2Kλ(δγ)

xλ−1 exp
{
− 1

2
(
δ2x−1 + γ2x

)}
1<+

If δ > 0 the permissible values for the other parameters are γ ≥ 0 if λ < 0 and γ > 0 if λ = 0. If δ ≥ 0
then γ, λ should be strictly positive.

Many important distributions may be obtained as special cases of the GIG. For λ > 0 and γ > 0,
the gamma distribution emerges as the limit when δ → 0. The inverse-gamma is obtained when λ < 0,
δ > 0 and γ → 0 and an inverse Gaussian distribution is obtained when λ = −1

2 .
Barndorff-Nielsen (1977) introduces the generalized hyperbolic (GH) distribution as a normal

variance-mean mixture where the mixing distribution is GIG. That is, if (X|W = w) ∼ N(µ+ βw,w)
and W ∼ GIG(λ, δ, γ) then the marginal distribution of X will be GH (i.e., X ∼ GH(λ, α, β, δ, µ),
where α2 = β2 + γ2). The probability density function of the GH is given by

(3) f(x) =

(
γ
δ

)λ
√

2πKλ(δγ)

Kλ−1/2

(
α
√
δ2 + (x− µ)2

)(√
δ2 + (x− µ)2/α

)1/2−λ exp
(
β(x− µ)

)
1<,
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where γ2 = α2 − β2. The parameter domain is defined by the following conditions: i) δ ≥ 0, α > 0,
α2 > β2 if λ > 0; ii) δ > 0, α > 0, α2 > β2 if λ = 0; iii) δ > 0, α ≥ 0, α2 ≥ β2 if λ < 0. The parameter
α determines the shape, β determines the skewness (the sign of the skewness is consistent with that
of β), µ is a location parameter, δ serves for scaling and λ influences the size of mass contained in the
tails. The class of GH distributions is closed under affine transformations i.e if X ∼ GH(λ, α, β, δ, µ)
and Z = b0X + b1 then Z ∼ GH(λ, α/|b0|, β/|b0|, |b0|δ, b0µ+ b1). An essential tool in what follows is
the moment generating function of the GH distribution:

(4) MGH(t) = exp(µt)

(
γ2

α2 − (β + t)2

)λ/2
Kλ

(
δ
√
α2 − (β + t)2

)
Kλ(δγ)

which exists provided that |β + t| < α.

3 Bayes estimators

The representation of the GH distribution as a normal mean-variance mixture with the GIG as mixing
distribution introduced in previous section provides the basis for obtaining the posterior distribution
of ηa,b = log(θa,b) when assuming a GIG prior for σ2. More specifically we can prove the following
result.

Theorem 3.1. Assume the following: i) p(ηa,b|σ2, X) ∼ N(ηa,b, a2σ2/n) and ii) p(ξ, σ2) = p(ξ)p(σ2),
with p(σ2) ∼ GIG(λ, δ, γ) and p(ξ) an improper distribution uniform over the real line.
It follows that

(5) p(σ2|data) ∼ GIG(λ̄, δ̄?, γ),

(6) p(ηa,b|data) ∼ GH(λ̄, ᾱ, β̄, δ̄, µ̄)

where δ̄? =
√
Y 2 + δ2, Y 2 =

∑n
i=1(Xi − X̄)2, λ̄ = λ − n−1

2 , ᾱ =
√

n
a2 (γ2 + nb2

a2 ) and β̄ = n b
a2 . Let

γ̄2 = ᾱ2 − β̄2. As a consequence γ̄2 = n
a2γ

2, δ̄ =
√

a2

n (Y 2 + δ2) and µ̄ = aX̄.

We are not primarily interested in p(ηa,b|data), but rather in θa,b = exp(ηa,b) which is dis-
tributed as a log-GH, a distribution that has not, to our knowledge, received any attention in the
literature. In any case, we can calculate the moments of p(θa,b|data) that we need for summariz-
ing the posterior distribution with a quadratic loss function by using the moment-generating func-
tion of the GH distribution (MGH(t)) and more specifically the fact that E(θ|data) = MGH(1) and
V (θ|data) = MGH(2)− [MGH(1)]2.

If we are able to generate samples from the GH distribution, moreover, we may obtain a sample
from its exponential transformation. The quantiles and probability intervals may then be calculated
using MC techniques. From among the variety of software available for generating random GH num-
bers, we mention the ghyp package running under R (Breymann and Lüthi, 2010).

Mη|data(t) exists only if
∣∣β̄ + t

∣∣ < ᾱ, or equivalently if ᾱ2 − (β̄ + t)2 > 0 (i.e., γ̄2 > t2 + 2n b
a2 t).

This condition implies the following constraint on the prior parameter γ:

(7) γ2 >
a2

n
t2 + 2bt.

The existence of posterior moments requires that γ is above a positive threshold when a 6= 0, b > 0
(as for the expected value). The threshold is asymptotically 0 for the median, (i.e., θ0,1), and it is
negative for the mode (whenever n > t/2): so, it does not represent a restriction. With respect to the
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inference on the expected value (θ1,0.5) note that the popular inverse gamma prior on σ2, a special case
of the GIG for λ < 0, δ > 0 when γ → 0, does not respect condition (7) thereby leading to a posterior
distribution with non-existent moments. Note that this result is consistent with the following remark
from Zellner (1971) concerning the inference about θ1,0: posterior moments exist only for the limit as
n→∞ (that is, when the log-t posterior converges to the log-normal).
Similarly, the uniform prior over the range (0, A) for σ (Gelman , 2006) implies that p(σ2) ∝ 1

σ1(0,A),
which may be seen as an approximation to a Gamma(1

2 , ε) (where ε = (4A2)−1) truncated at A2. For
λ > 0, γ > 0 and δ → 0, GIG(λ, δ, γ) → Gamma(λ, γ2/2). If we let A → ∞, therefore, p(σ) ∝ 1 is
equivalent to a GIG prior with γ → 0 and thus implies non-existent posterior moments.

Consistent with intuition, condition (7) implies that, in practice, to obtain a posterior distribu-
tion of θa,b with finite moments, a prior with short tails should be chosen. If we summarize p(θ|data)
using the ordinary quadratic loss function we obtain θ̂QBa,b = E(θa,b|data) or

θ̂QBa,b = exp(µ̄)

(
γ̄2

ᾱ2 − (β̄ + 1)2

)λ̄/2
Kλ̄

(
δ̄
√
ᾱ2 − (β̄ + 1)2

)
Kλ̄(δ̄γ̄)

(8)

= exp(aX̄)

(
γ2

γ2 −
(
a2

n + 2b
))(λ−n−1

2
)/2K{λ−n−1

2
}

(√
(Y 2 + δ2)(γ2 − (a2

n + 2b))
)

K{λ−n−1
2
}

(√
(Y 2 + δ2)γ2

) .(9)

We provided two alternative expressions for θ̂QBa,b : (8) is indexed on the posterior parameters, and
(9) highlights the role of the prior parameters, which and will be useful for studying the choice of
hyperparameters that is discussed in the next section.

Under a relative quadratic loss function, the Bayes estimator is defined as θ̂RQBa,b = E(θ−1
a,b)/E(θ−2

a,b)
(see Zellner (1971)). The following result shows that θ̂RQB may be reconducted to a Bayes predictor
under a quadratic loss function with a different choice of b and modified prior parameters.

Theorem 3.2. For the Bayes estimator under relative quadratic loss function, we have that θ̂RQBa,b =

θ̂QBa,b? with b? = b − 2a2/n provided that the prior p(σ2) ∼ GIG(λ, δ, γ?) with γ2
? = γ2 − 4a2/n + 4b is

assumed.

4 Prior elicitation

We can easily see that θ̂QBa,b is sensitive to the choice of the prior parameters; therefore a careful
choice of λ, δ, γ is an essential part of the inferential procedure. Following Rukhin (1986), our aim
is to choose the hyperameters to minimize the frequentist MSE of the Bayes estimators. In practice
this choice is a complicated task because expression (9) contains a ratio of Bessel-K functions that is
quite intractable. Following Rukhin (1986) again, we will use a ‘small argument’ approximation to
obtain the MSE-‘optimal’ values of the hyperparameters. Unfortunately this method is viable only
for λ and δ because the small value approximation is free of γ. We also proved, using simulations not
reported here for brevity, that the parameters determined in this manner also leads to good estimators
performance when the arguments of the Bessel-K functions are no longer small. Consider first the
following approximation of θ̂QBa,b using the ‘small argument’ approximation of the Bessel-K functions.

Theorem 4.1. Under the assumption that (Y 2 + δ2)γ2 < 1, (Y 2 + δ2)(γ2− (a
2

n +2b)) < 1 and λ̄ < −1
then

(10) θ̂QB ∼= exp(aX̄) exp

{
−(Y 2 + δ2)(a2 + 2nb)

4n(λ− n−3
2 )

}
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Denote the ‘small argument’ approximation of θ̂QB by θ̂qb. Note that, because λ̄ = λ− (n−1)/2
the assumption λ̄ < 1 is consistent (at least for large samples) for all choices of λ as a constant
independent of n. As anticipated, this approximation is free of γ, therefore we will postpone the
discussion of an effective choice of the value to assign to that parameter.

Rukhin (1986) proves that to minimize the frequentist MSE of estimators in the form exp(aX)g(Y )
such as θ̂qb , and θ̂QB,

(11) E
[
g(Y )− exp(cσ2)

]2
,

where c = b − 3a2/(2n), should be minimized. Unfortunately, minimization of (11) with respect to
(λ, δ) does not lead to a unique minimum. The optimum MSE is reached for a set of (λ, δ) pairs that
are described by equation (12).

Theorem 4.2. The value of λ in (10) that minimizes (11) (i.e., its frequentist MSE) is given by

(12) λopt =
n− 3

2
− (n− 1)(a2 + 2nb)

4nc
− (a2 + 2nb)

4nc
δ2

σ2

for any δ in <+.

The λopt in (12) is a function not only of δ, as anticipated, but also of the unknown σ2; therefore,
an optimal choice of (δ, λ) should depend, at least in principle, on a prior guess for σ2. A method for
circumventing the problem that is implicitly suggested by the generalized prior proposed by Rukhin
(1986), is to let δ → 0. This condition may be approximated in practice by a δ that is much smaller
than σ so as to make the third addend in (12) negligible. This approximation can be justified by
noting that, in the GH distribution, δ has the same order of magnitude of the expectation and the
mode of σ2; therefore, choices of the type δ = kσ2

0 for some constant k and prior guess of the variance
σ2

0, imply a negligible third addend in (12) in the ‘small value setting’ we assumed for the derivation
of θ̂qb.

The estimator θ̂qb1,0.5 is connected to popular estimators that have already been discussed in the
literature. Note that if δ = 0, a = 1, b = 0.5 and we replace λopt into (3.1), we obtain θ̂qb1,0.5 =

exp
(
(X̄) + S2(n−3)

2n

)
, which is the MSE-optimal estimator (3.9) proposed by Zellner (1971) with the

assumed known σ2 replaced by S2 = Y 2/(n− 1). Similarly, for the log-normal median (i.e., for a = 1,
b = 0), we obtain θ̂qb1,0 = exp

(
(X̄) − S23

2n

)
, again the MSE-optimal estimator (3.3) of Zellner (1971)

with σ2 replaced by its unbiased estimator.
As far as γ is concerned, we propose choosing a value close to the minimum value to assure for

the existence of the first two posterior moments. Therefore, we specify the GIG with heaviest possible
tail among those yielding p(θ|data) with finite variance:

(13) γ2
0 = 4

(a2

n
+ b
)

+ ε.

Note that γ0 depends on n. In any case, we found in our simulations that θ̂QB1,0.5 are not partic-
ularly sensitive to alternative choices of γ0 that are close to (i.e., of the same order of magnitude of)
the γ0 we propose. Much larger values lead to inefficient θ̂QB1,0.5 with far larger frequentist MSEs.

5 Conclusions

In this paper, we considered the popular log-normal model and the specific problems associated with
estimating many of its parameters (including mean, median and mode). These problems are caused by
the fact that log− t and other distributions that can be met the analysis of the log-normal model have
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no finite moments. Our approach is Bayesian but parallel problems arise from a frequentist perspective.
Specifically we wanted to continue using the popular quadratic loss function to summarize the posterior
distribution. We found that a generalized inverse gamma prior for the population variance allows
formally stating the conditions on the prior parameters that lead to posterior distributions with finite
moments.

We complemented the results outlined in previous sections with a simulation exercise based on
the same setting considered by Shen et al. (2006), Section 5. The main result of this simulation is
that, adopting our prior specification the Bayes estimator of the log-normal mean based on quadratic
loss is substantially equivalent to the estimator proposed by Shen et al. (2006), which has been proved
to be superior to many of the alternatives previously proposed in the literature. Moreover our Bayes
estimator of the mean has also smaller frequentist MSE than the Bayes estimators based on relative
quadratic loss proposed by Rukhin (1986) and the one introduced in theorem 3.2.

We also considered alternative choices of the hyperameters when a guess of σ2 is available. This
leads to different choices of δ and λ. As it may be expected the use of a guess of σ2 has a great
potential for improving the MSE of the resulting Bayes estimators; anyway it may be detrimental
when the guess is grossly wrong. We studied how to use the available prior guess of σ2 to obtain a
prior that is reasonably robust with respect to wrong guessing.
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Gelman, A., (2006) Prior distributions for variance parameters in hierarchical models, Bayesian
Analysis, 1, 515–533.

Rukhin, A.L. (1986), Improved estimation in lognormal models, Journal of the American Statistical
Association, 81, 1046–1049.

Shen, H., Brown, L.D., and Zhi H. (2006), Efficient estimation of log-normal means with application
to pharmacokinetic data, Statistics in Medicine, 25, 3023–3038.

Zellner, A. (1971), Bayesian and non-Bayesian analysis of the log-normal distribution and log-normal
regression, Journal of the American Statistical Association, 66, 327–330.

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS066) p.5619


