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Laboratoire de Mathématiques Appliquées aux Sciences Sociales
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Abstract

The literature on portfolio analysis assumes that the securities returns are random
variables with fixed expected returns and variances values (see Bachelier [1], Briec et al.
[4] and Markowitz [10]). However, since investors receive efficient or inefficient informa-
tion from the real world, ambiguous factors usually exist in it. Consequently, we need
to consider not only random conditions but also ambiguous and subjective conditions
for portfolio selection problems. A recent literature has recognized the fuzziness and the
uncertainty of portfolios returns. As discussed in [6], investors can make use of fuzzy set
to reflect the vagueness and ambiguity of securities (i.e. incompleteness of information
due to the lack of data). Therefore, the probability theory becomes difficult to used. For
example, some authors such as Tanaka and Guo [11] quantified mean and variance of a
portfolio through fuzzy probability and possibility distributions, Carlsson et al.[2]-[3] used
their own definitions of mean and variance of fuzzy numbers. In particular, Huang [7]
quantified portfolio return and risk by the expected value and variance based on credibil-
ity measure. Recently, Huang [7] has proposed the mean-semivariance model for portfolio
selection and, Li et al.[5], Kar et al.[8] introduced mean-variance-skewness for portfolio
selection with fuzzy returns.

Different from Huang [7] and Li et al.[5], after recalling the definition of mean, vari-
ance, semi-variance and skewness, this paper considers the Kurtosis and semi-Kurtosis
for portfolio selection with fuzzy risk factors (i.e. returns). Several empirical studies
show that portfolio returns have fat tails. Generally investors would prefer a portfolio
return with smaller semi-kurtosis (or Kurtosis) which indicates the leptokurtosis (fat-tails
or thin-tails) when the mean value, the variance and the asymmetry are the same. Our
main objective is to contribute to a sound formal foundation of statistics and finance built
upon the theory of fuzzy set.
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The aim of this paper is to measure the leptokurtocity of fuzzy portfolio return by
means of the two new notions of semi-kurtosis and Kurtosis. The paper is organized as
follow: In Section I, we recall the notions of means, variance, semi-variance and skewness
of a fuzzy variable. In Section II, we originally introduce the two notions of kurtosis and
semi-kurtosis and determine some mathematical properties (which are fuzzy versions of
their well-known crisp properties). We display an application in finance by establishing
the mean-semivariance-skewness-semikurtosis model for a portfolio selection with fuzzy
risk factors (i.e. trapezoidal risk factors).
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1 PRELIMINARIES

1.1 Fuzzy variable and credibility

A fuzzy set A of a universeX is a mapping µA defined fromX to [0, 1]. If ∀x ∈ X,µA(x) ∈ {0, 1},
then A is a crisp set.

A fuzzy variable ξ is a fuzzy set of R with a membership function µ. For a real number x,
µ(x) represents the possibility that ξ takes value x.

There are two usual fuzzy variables: ξ = (a, b, c, d) a trapezoidal fuzzy variable (∀x ∈
] − ∞, a] ∪ [d,+∞[, µξ(x) = 0;∀x ∈ [b, c], µξ(x) = 1; ∀x ∈ [a, b], µξ(x) = 1

b−ax −
a
b−a ;∀x ∈

[c, d], µξ(x) = 1
c−dx−

d
c−d).

If b = c, then ξ = (a, b, b, d) = (a, b, d) is a triangular fuzzy variable.
ξ = (a, b, c, d) is symmetric if ∃t ∈ R,∀r ∈ R, µ(t− r) = µ(t+ r).

Note that for ξ taking values in B, Zadeh [12] has defined the possibility measure of B by

Pos({ξ ∈ B}) = sup
x∈B

µ(x)

and the necessity measure of ξ by

Nec({ξ ∈ B}) = 1− sup
x∈Bc

µ(x).

But neither, of these measures are self-dual. That reason also justified the introduction of the
credibility measure by Liu ([9]).

Liu defined the credibility measure as the average of possibility measure and necessity
measure as follows:

Cr({ξ ∈ B}) =
1

2

(
sup
x∈B

µ(x) − sup
x∈Bc

µ(x) + 1

)
.

It is easy to show that credibility measure is self-dual. That is,

Cr({ξ ∈ B}) + Cr({ξ ∈ Bc}) = 1.

Let us end this Subsection by giving some notations useful throughout this paper: for a
trapezoidal fuzzy variable ξ = (a, b, c, d) such that a 6= b and c 6= d, supp(ξ) = [a, d] its
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support, cor(ξ) = [b, c] its core, ls the length of supp(ξ) and lc the length of cor(ξ). We set:
α = b− a, β = d− c, ls(ξ) = d− a and lc(ξ) = c− b.
For a triangular fuzzy variable ξ = (a, b, c) such that b 6= a and c 6= a, we set: α1 = max{b −
a, c− b} and γ = min{b− a, c− b}.
ξ = (a, b, c, d) is symmetric if α = β, and ξ = (a, b, c) is symmetric if α1 = γ.

1.2 Expected Value, Variance and Skewness of fuzzy variables

The definitions of the expected value, variance and skewness of fuzzy variables are obtained
from Li et al. [5].

Definition 1. Let ξ be a fuzzy variable. Then:

• its expected value E[ξ] is defined as

E[ξ] = e =

∫ +∞

0

Cr{ξ ≥ r}dr −
∫ 0

−∞
Cr{ξ ≤ r} dr

provided that at least one of the above integrals is finite.

• its variance is defined as V [ξ] = E[(ξ − e)2].

• its semivariance is defined as V S[ξ] = E[[(ξ − e)−]2] =
∫ +∞

0
Cr{[(ξ − e)−]2 ≥ r}dr where

(ξ − e)− is a fuzzy variable defined as (ξ − e)− =

{
ξ − e if ξ ≤ e
0 if ξ > e

.

• its skewness is defined as Sk[ξ] = E[(ξ − e)3].

The expected value of a trapezoidal fuzzy variable denoted ξ = (a, b, c, d) is given by E[ξ] =
a+b+c+d

4
. Note that, expected value is one of the most important concepts of fuzzy variable,

which gives the center of its distribution.
The variance of ξ = (a, b, c, d) is

V [ξ] = −[
1

4
(ls(ξ) + lc(ξ))]

3(
|α− β|

3αβ
) + max(

( |α−β|
4
− 1

2
lc(ξ))

3

6α ∨ β
, 0)+

|α− β|
2αβ

[
1

2
ls(ξ)−

(α + β)

4
][

1

4
(ls(ξ) + lc(ξ))]

2 +
( |α−β|

4
+ 1

2
ls(ξ))

3

6α ∨ β
−

( |α−β|
4

+ 1
2
lc(ξ))

3

6α ∧ β
.

We can easily check that if ξ is symmetric (α = β), V [ξ] simply becomes

V [ξ] =
3[(c− b) + β]2 + β2

24
.

The semi-variance of ξ is defined by

V S[ξ] =
1

6(b− a)
[(
e− a

4
)3 + min(0, (

b− e
4

)3)] +
1

6(d− c)
max(0, (

e− c
4

)3). (1)

The skewness of a trapezoidal fuzzy variable ξ = (a, b, c, d) is given by

Sk[ξ] =
1

8(b− a)
[(
b− e

4
)4 − (

a− e
4

)4] +
1

8(c− d)
[(
c− e

4
)4 − (

d− e
4

)4]. (2)

Let us recall that from these results, we can deduce those of a triangular fuzzy variable.

Remark 1. The variance of ξ is used to measure the spread of its distribution about e = E(ξ).
Note that, variance concerns not only the part “ξ” is less than e, but also the part ξ is greater
than e. If we are only interested with the first part, then we should use the concept of semi-
variance.
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2 Kurtosis and Semikurtosis

2.1 Definitions, examples and some first properties

Definition 2. Let ξ be a fuzzy variable with expected value e.

• The kurtosis of ξ, denoted K[ξ], is given by: K[ξ] = E[(ξ − e)4].

• The semikurtosis, KS[ξ], is given by: KS[ξ] = E[[(ξ−e)−]4] =
∫ +∞

0
Cr{[(ξ−e)−]4 ≥ r}dr.

Example 1. For a trapezoidal fuzzy variable denoted ξ = (a, b, c, d) with expected value E[ξ] =
e, we have the following results:

• the kurtosis is given by

K[ξ] = −[
1

4
(ls(ξ) + lc(ξ))]

5(
|α− β|

5αβ
) + max(

( |α−β|
4
− 1

2
lc(ξ))

5

10α ∨ β
, 0) +

( |α−β|
4

+ 1
2
ls(ξ))

5

10α ∨ β

|α− β|
2αβ

[
1

2
ls(ξ)−

(α + β)

4
][

1

4
(ls(ξ) + lc(ξ))]

4 −
( |α−β|

4
+ 1

2
lc(ξ))

5

10α ∧ β

• the semikurtosis is given by

KS[ξ] =
1

10(b− a)
[(
e− a

4
)5 + min(0, (

b− e
4

)5)] +
1

10(d− c)
max(0, (

e− c
4

)5) (3)

It is important to notice that from these results, we can deduce those of a triangular fuzzy
variable.

Proposition 1. Let ξ be a fuzzy variable with finite expected value e, KS[ξ] and K[ξ] the
semi-kurtosis and kurtosis of ξ respectively. Then:

• 0 ≤ KS[ξ] ≤ K[ξ].

• KS[ξ] = 0 if and only if Cr{ξ = e} = 1, i.e.,K[ξ] = 0.

• If ξ is symmetric, then KS[ξ] = K[ξ].

Proof: 1) Let us show that 0 ≤ KS[ξ] ≤ K[ξ].

Let r ∈ R. With the definition of (ξ − e)−, we have: [(ξ − e)−]4 =

{
(ξ − e)4 if ξ ≤ e
0 if ξ > e

. Thus

we distinguish two cases as follows:
i) If ξ(θ) ≤ e, then [(ξ(θ)− e)−]4 = (ξ(θ)− e)4. And [(ξ(θ)− e)−]4 ≥ r ⇔ (ξ(θ)− e)4 ≥ r.
ii) If ξ(θ) > e, then [(ξ(θ) − e)−]4 = 0 and (ξ(θ) − e)4 ≥ [(ξ(θ) − e)−]4. Thus the inequality
[(ξ(θ) − e)−]4 ≥ r implies (ξ(θ) − e)4 ≥ r. We deduce that ∀θ, r, {θ/[(ξ(θ) − e)−]4 ≥ r} ⊆
{θ/(ξ(θ)−e)4 ≥ r}. Since Cr is monotone, we have: ∀r, Cr{[(ξ−e)−]4 ≥ r} ≤ Cr{(ξ−e)4 ≥ r}.
Hence K[ξ] =

∫ +∞
0

Cr{(ξ − e)4 ≥ r}dr ≥
∫ +∞

0
Cr{[(ξ − e)−]4 ≥ r}dr = KS[ξ].

2) Let us show that KS[ξ] = 0 if and only if Cr{ξ = e} = 1, i.e.,K[ξ] = 0. Assume that
K[ξ] = 0. The previous result implies that KS[ξ] = 0.
Assume that KS[ξ] = 0. that is, E[[(ξ−e)−]4] = 0. Since E[[(ξ−e)−]4] =

∫ +∞
0

Cr{[(ξ−e)−]4 ≥
r}dr, and the credibility measure Cr takes its value in [0; 1], then Cr{[(ξ − e)−]4 ≥ r} =
0,∀r > 0. By the self-duality of Cr, we have Cr{[(ξ − e)−]4 = 0} = 1 and, we deduce that
Cr{(ξ − e)− = 0} = 1. Since ξ − e = (ξ − e)− + (ξ − e)+, then the previous equality implies
ξ − e = (ξ − e)+. And E[(ξ − e)] = E[(ξ − e)+] =

∫ +∞
0

Cr{(ξ − e)+ ≥ r}dr = 0. This equality
implies that Cr{(ξ−e)+ ≥ r} = 0,∀r > 0. Since Cr is self dual, we obtain Cr{(ξ−e)+ = 0} = 1.
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With Cr{(ξ − e)− = 0} = 1 and Cr{(ξ − e)+ = 0} = 1, we deduce Cr{(ξ − e) = 0} = 1, that
is, Cr{ξ = e} = 1.
Assume that Cr{ξ = e} = 1. It is obvious to show that K[ξ] = 0.
3) Assume that ξ is symmetric and let us show that KS[ξ] = K[ξ].
Since K[ξ] =

∫ +∞
0

Cr{(ξ − e)4 ≥ r}dr and KS[ξ] =
∫ +∞

0
Cr{[(ξ − e)−]4 ≥ r}dr, it suffices to

show that: Cr{(ξ − e)4 ≥ r} = Cr{[(ξ − e)−]4 ≥ r}. For that we distinguish two cases:
- If r < 0, then we have Cr{(ξ − e)4 ≥ r} = Cr{[(ξ − e)−]4 ≥ r} = Cr{Θ} = 1.
- If r ≥ 0, then (with r = r′4) and assume that r′ > 0. We have (ξ − e)4 ≥ r ⇔ (ξ − e) ∈
]−∞;−r′]∪[r′; +∞[, and [(ξ−e)−]4 ≥ r ⇔ (ξ−e)− ∈]−∞;−r′]∪[r′; +∞[. Therefore, we obtain
Cr{(ξ−e)4 ≥ r} = 1−Cr{−r′ < ξ−e < r′}, Cr{[(ξ−e)−]4 ≥ r} = 1−Cr{−r′ < (ξ−e)− < r′}.
It rests to show that Cr{−r′ < ξ − e < r′} = Cr{−r′ < (ξ − e)− < r′}.
Let µ be the membership function of ξ − e and µ′ be the membership function of (ξ − e)−. Let

us recall that µ′ =

{
µ if ξ < e
0 otherwise

.

We have:
Cr{−r′ < ξ − e < r′} = 1

2
[1 + supx∈]−r′;r′[ µ(x) −max(supx∈]−∞;−r′[ µ(x), supx∈]r′;+∞;[ µ(x))] =

1
2
[1 + supx∈]−r′;0[ µ(x)− supx∈]−∞;−r′[ µ(x)]. We also have Cr{−r′ < (ξ− e)− < r′} = Cr{−r′ <

(ξ− e)− ≤ 0} since (ξ− e)− ≤ 0. Therefore Cr{−r′ < (ξ− e)− < r′} = 1
2
[1 + supx∈]−r′;0[ µ

′(x)−
max(supx∈]−∞;−r′[ µ

′(x), supx∈]0;+∞;[ µ
′(x))]= 1

2
[1 + supx∈]−r′;0[ µ

′(x) − supx∈]−∞;−r′[ µ
′(x)] since

µ′(x) = 0,∀x ∈]0; +∞[.
Hence Cr{−r′ < ξ − e < r′} = Cr{−r′ < (ξ − e)− < r′}. �

2.2 An application in finance: review, model and determinist pro-
gramm

Let ξi be a fuzzy variable representing the return of the ith security, and let xi be the proportion

of the total capital invested in security i. In general, ξi is given as
(p′

i+di−pi)

pi
, where pi is the

closing price of the ith security at present, p′i is the estimated closing price in the next year, and
di is the estimated dividends during the coming year. It is clear that p′i and di are unknown at
present. If they are estimated as fuzzy variables, then ξi is also a fuzzy variable. Thereby, the
portfolios x1, ..., xn and the total return ξ = ξ1x1 + ξ2x2 + ...+ ξnxn are also fuzzy variables.
When minimal expected return, minimal skewness and maximal risk are given, the investors pre-
fer a portfolio with small semi-kurtosis. Therefore, we proposed the following mean-semivariance-
skewness-semikurtosis model:



minimize KS[x1ξ1 + x2ξ2 + ...+ xnξn]
subject to
E[x1ξ1 + x2ξ2 + ...+ xnξn] ≥ s1

V S[x1ξ1 + x2ξ2 + ...+ xnξn] ≤ s2

Sk[x1ξ1 + x2ξ2 + ...+ xnξn] ≥ s3

x1 + x2 + ...+ xn = 1
xi ≥ 0, i = 1, 2, ..., n.

. (4)

The first constraint of this first model ensures the expected return is no less than some target
value s1, the second one assures that risk does not exceed some given level s2 the investor can
bear, the third one assures that the skewness is no less than some target value s3. The last two
constraints imply that all the capital will be invested to n securities and short-selling is not
allowed.
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We now assume that (ξi)i∈{1,...,n} is a family of n independent triangular fuzzy variables.
Thereby, based upon formulae 1, 2 and 3, we obtain the following result which display a
determinist programm.

Theorem 1. Let (ξi = (ai, bi, ci))i=1,2,...,n be a family of n independent triangular fuzzy variables.
Then the model (4) becomes the following determinist programm:

min 1
10

∑n
i=1 xi(bi−ai)

[(
∑n

i=1 xi(ei−ai)

4
)5 + 1∑n

i=1 xi(bi−di)
(

∑n
i=1 xi(bi−ei)

4
)5 min(0,

∑n
i=1 xi(bi − ei))]

subject to∑n
i=1 xi(ai + 2bi + ci) ≥ 4s1

1
5

∑n
i=1 xi(bi−ai)

[(
∑n

i=1 xi(ei−ai)

4
)3 + 1∑n

i=1 xi(bi−di)
(

∑n
i=1 xi(bi−ei)

4
)3 min(0,

∑n
i=1 xi(bi − ei))] ≤ s2

(
∑n

i=1 xi(ci − ai))2
∑n

i=1 xi(ci − 2bi + ai) ≥ 32s3

x1 + x2 + ...+ xn = 1
xi ≥ 0, i = 1, 2, ..., n

2.3 Concluding remarks

The next step of our research will be to design a genetic algorithm integrating fuzzy simulation
for our optimization model and, to apply to real financial portfolios data.
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