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The present paper is concerned with modelling and estimating the ’true’intake distribution on
the basis of survey recall scores from a short reference period. There is a long and highly sophisticated
tradition for the problem (see e.g. Nusser et al., 1997, Dodd et al. 2006, Kipnis et al. 2009). We
treat specifically the empirical case of estimating the true alcohol intake distribution from a series of
Finnish alcohol consumption surveys. This paper is a revised and very condensed version, based on
Alanko(1997). Space permits only a small proportion of the results to be presented.

Overview of the models

Two unobservable/latent variates Λ and Ξ representing the ’true’ rate of consumption and
the ’true’mean amount consumed on a single occasion are introduced.Observable variates L and X̄
representing, respectively, the number of occasions in the reference period and the average amount
per occasion, are defined at the individual level to follow the condensed Poisson and the gamma
sampling distributions. The corresponding marginal distributions are derived as continuous mixtures
of the individual level distributions by parametric prior distributions. ’True’volume consumed by a
randomly chosen individual is defined as the product product Υ = Λ ·Ξ of the latent rate distribution
and the latent mean amount consumed. The distribution of the true intake volume is derived and
estimated by ML from the observed marginal distributions.

Modelling: the intake frequency

In our abundant empirical data, it was noticed that the average interoccasion lengths had a
roughly linear relation to interoccasion standard deviations (of individual respondents). It was thus
natural to examine individual consumption processes with constant CV’s i.e. gamma distributed
interoccasion lenghts. Moving to counts and examining the Gamma parameters, it was concluded
that the Condensed Poisson distribution with parameter 2 would probably be a good approximation
to an individual with a given process rate, say λ.Thus we would model the count distribution of
consumption occasions of an individual with rate λ as:
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As individuals have very different rates of consumption, a standard technique is to treat the
rate as a random variate with a flexible mixing distribution. For instance, we assumed that the rates
over the population of individuals would vary according to the inverse Gaussian distribution, with
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parameters µ2 > 0, β2 > 0. The density of Λ, the rate distribution, would then be:
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and integrating over λ, one would get the marginal distribution of the number of occasions as
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where fK(·) is the probability function of the Poisson-inverse Gaussian distribution, PIG, defined for
k = 0, 1, . . . and µ > 0, β > 0 as
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with Kν being the modified Bessel function of the third kind of order ν. The marginal distribution (3)
could then be used for estimating the unknown parameters µ2 > 0, β2 > 0 from consumption survey
data.

Modelling: amounts consumed

In a similar vein to the number of occasions, the amounts consumed were modelled as compound
distributions, with a Gamma distributed individual amount variation, and inverse Gaussian distributed
inter-individual distribution for the individual mean parameter. Then the mean amount per occasion
would be Ξ ∼ IG(ν2, γ2) but the parameters would have to be estimated from a distribution of
observables, in this case the observed average consumption x̄ of an individual, given the number of
occasions l The following is an example: For l observed amounts, the density of X̄|L which we will
refer to as GIG, is, for x̄ ≥ 0, l = 1, 2, . . . and ν2 > 0, γ2 > 0, δ > 0,
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True intake distribution

Given the distributions of Ξ and Λ above, the population distribution of the volume consumed
is expressed as the density of the product variable Υ = Λ · Ξ on the condition Λ ⊥⊥ Ξ. The density of
the product of the two variables is of the form

(6) fΥ(υ; θΞ, θΛ) =

∫ ∞
0

fΞ(
υ

λ
; θΞ) fΛ(λ; θΛ)

1

λ
dλ,

where fΛ(·), fΞ(·) and the parameter vectors θΛ = {µi, βi} and θΞ = {νi, γi} as defined previously. In
practice, we are interested in the distribution function of Υ

(7) FΥ(a) =

∫ a

0
fΥ(υ)dυ,
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where a is a given consumption threshold or, alternatively, in the exceedance proportions 1− FΥ(a).Choosing,
for instance the combination Λ ∼ IG(µ2, β2) and Ξ ∼ IG(ν2, γ2), the density for the volume con-
sumed, or, more generally, the density of the product of two independent inverse Gaussian variates
with different parameters is given by
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Empirical

In Alanko (1997) several combinations of mixing distributions and models are derived, estimated
and tested. Some of the goodness-of-fit results are given in the oral presentation. The main empirical
results of this study are the ’true’intake distributions estimated from Finnish alcohol consumption
surveys samples for several consequtive surveys starting from 1976, separately for males and females.

Additional topics

In addition to the main results, the modelling enables prediction and inference, i.e. scoring
concerning the respondents in the sample. For that purpose regression techniques, based on the
Bayesian approach, are developed. The modelling approach employed gives also the opportunity to
model (in a somewhat speculative sense) the mechanisms behind the survey measurement/response
errors. Some suggestions for this are explored empirically.
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