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Introduction

In the potential outcome approach to causal inference (Rubin, 1974, 1978), a causal inference problem

is viewed as a problem of missing data, where the assignment mechanism is explicitly posed as a

process for revealing the observed data. The assumptions on the assignment mechanism are crucial

for identifying and deriving methods to estimate causal effects. A commonly invoked identifying

assumption is unconfoundedness (Rosenbaum and Rubin, 1983), which usually holds by design in

randomized experiments. However, even under such assumption, inference on causal effects may be

invalidated due to the presence of post-treatment complications, such as noncompliance (Angrist et

al., 1996), truncation by death (Zhang and Rubin, 2003) and missing outcome values (Frangakis and

Rubin, 1999). Here, we focus on identifying causal effects in the presence of missing outcome values,

primarily due to nonresponse. Because nonresponse occurs after treatment assignment, respondents

are not comparable by treatment status: the observed and unobserved characteristics of respondents

in each treatment group are likely to differ and may be associated with the values of the missing

outcome, making the missing mechanism nonignorable (e.g., Rubin, 1976; Little and Rubin, 2002).

A relatively recent approach to deal with post-treatment complications within the potential

outcome approach is principal stratification, introduced by (Frangakis and Rubin, 2002). In this

paper, we apply principal stratification in order to develop a novel approach to deal with nonignorable

missing outcome values without imposing any restriction on treatment effect heterogeneity. We rely

on the presence of a binary instrument for nonresponse and provide new sufficient conditions for

partial identification of causal effects for subsets of units (unions of principal strata) defined by their

nonresponse behavior in all possible combinations of treatment and instrument values. The framework

allows us to clarify and discuss substantive behavioral assumptions, which may differ from those

required by other approaches.

Principal Stratification and its Role for Causal Inference

Principal stratification was first introduced by Frangakis and Rubin (2002), in order to address post-
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treatment complications, i.e., events which cannot be ignored when inferring on causal effects, and

require adjusting for them, although conditioning on their observed values (e.g., including them in a

regression model) may lead to estimating parameters which are not, in general, causal effects. We

first introduce potential outcomes for one post-treatment variable, Y , and a binary treatment, T . If

unit i in the study (i = 1, . . . , N) is assigned to treatment Ti = t (t = 1 for treatment and t = 0

for no treatment), we denote with Yi(Ti = 1) = Yi(1) and Yi(Ti = 0) = Yi(0) the two potential

outcomes, either of which can be observed depending on the value taken by T . A causal effect of T

on Y is defined, on a single unit, as a comparison between Yi(1) and Yi(0). The fact that only two

potential outcomes for each unit are defined reflects the acceptance of the stable unit treatment value

assumption (SUTVA; Rubin, 1980) that there is no interference between units and that both levels

of the treatment define a single outcome for each unit. We also denote with Si(t) the post-treatment

potential variable, which represents a response indicator for Yi(t): the observation of Yi(t) is missing

if Si(t) = 0. To simplify the notation, we will drop the i subscript in the sequel.

Consider the potential response indicators S(0) and S(1). Within each cell defined by values

of the covariates, units under study can be stratified into four latent groups, named Principal Strata,

according to the joint values (S(0), S(1)): stratum 11 : S(1) = S(0) = 1 comprises those who would

respond under treatment and under control; stratum 10 : S(1) = 1, S(0) = 0 comprises those who

would respond under treatment but not under control; stratum 01 : S(1) = 0, S(0) = 1 comprises

those who would not respond under treatment but would respond under control; and stratum 00 :

S(1) = S(0) = 0 comprises those who would never respond regardless of treatment assignment.

The principal stratum membership, G = {11, 10, 01, 00}, is not affected by treatment assignment

by definition, so it only reflects characteristics of subjects, and can be regarded as a covariate, which

is only partially observed in the sample (Angrist et al., 1996).

Note that, although causal effects of the treatment are well defined for the whole population,

and thus for all latent groups, only in stratum 11 we can observe Y (1) for some respondent units under

treatment and Y (0) for some other respondent units under control. On the contrary, in the other three

strata we can observe the outcome only for respondents in at most one of the two treatment arms.

What makes stratum 11 interesting is the fact that only in this stratum can we hope to learn something

about the causal effect, even if it may not be an interesting stratum per se. Although conceptually

a different problem, the identification issues in estimating the effect for the stratum of the always

respondents are analogous to those related to the identification of the effect of the treatment effect on

the always survivors in studies suffering from truncation by death (e.g., Zhang and Rubin, 2003).

Some of the assumptions that may be invoked to deal with nonresponse essentially assume that

nonresponse is ignorable. For instance, both the missing completely at random (MCAR) assumption

and the weaker missing at random (MAR) assumption describe ignorable missing data mechanisms

(Rubin, 1976; Little and Rubin, 2002)1, which are convenient because they allow us to avoid an

explicit probability model for nonresponse. If the response probability depends on both observable

and unobserved characteristics, then nonresponse is nonignorable.

In the econometric literature alternative ways to deal with nonresponse include instrumental

variable assumptions (e.g., Manski, 2003). Plausible instrumental variables for nonresponse can be

found relatively easily (unlike finding instruments for other intermediate variables): data collection

characteristics, for example, are likely to affect the response probability but not the outcome values.

Characteristics of the interviewer (e.g., gender), interview mode, length and design of the questionnaire

can be convincing instruments for nonresponse (see, for example, Nicoletti, 2010).

We use a binary instrument for nonresponse in a causal inference framework; in this context

complications arise because we have to deal simultaneously with the nonresponse behavior under

1Ignorability requires that, in addition to MAR, the parameters of a MAR missing data process be distinct from those

of the data distribution.
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Table 1. Principal strata with a binary treatment and a binary instrument for nonresponse

G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S(0, 0) 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

S(0, 1) 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

S(1, 0) 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

S(1, 1) 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

treatment and under control.

Identifying Causal Effect with Nonignorable Nonresponse on the Outcome and an In-

strumental Variable

Principal stratification with a binary treatment and a binary instrument for nonresponse

We assume that the distributions that are asymptotically revealed by the sampling process are known,

or can be consistently estimated, thereby not taking account of specific statistical inference problems

related to estimation in finite samples.

In addition to treatment T , whose causal effect on Y is still our primary interest, suppose that

units are exposed to an additional treatment Z which is related to nonresponse S but unrelated to

the outcome Y . For instance, consider the following simplified example from Janssens et al. (2008),

as a potential empirical scenario. A randomized trial to assess the effects of a campaign for AIDS

prevention is conducted. Let T be a binary treatment which represents the offer of free condoms. T

is randomly assigned to a group of individuals at high risk of HIV infection. The post-assignment

HIV infection status Y may be missing due to refusal of some patients to participate in the HIV-

test; presumably non-participants are more likely to be HIV-positive than individuals who take the

test. The identity of nurses, Z, can be reasonably used as an instrument for nonresponse if (a) the

propensity to take the HIV test varies with the nurses; (b) nurses, whose identity cannot affect the

result of the test (HIV infection status), are randomly assigned to patients.

In this example the variable Z can be regarded as a treatment, because an intervention on it

can be contemplated. The assignment of two binary treatments, T and Z, implies that four potential

outcomes can be defined for each post-treatment variable, the primary outcome, Y , and the response

indicator, S, in our case: S(t, z), Y (t, z) for t = 0, 1 and z = 0, 1. Principal strata are defined

according to the joint values of S(0, 0), S(0, 1), S(1, 0), and S(1, 1). Because the response indicator

is binary, the stratum membership, G, takes on 16 values (see Table 1). Unlike the case discussed in

the previous section with no instrument, there is more than one stratum from which we can hope to

learn something about the causal effect of T on Y , i.e., all the strata where some units respond under

treatment and some units respond under control (G = 6, 7, 8, 10, 11, 12, 14, 15, 16). In this setting,

estimands of interest are causal effects for some (union) of these strata. Note that these strata include

subjects who are more responsive to the instrument, i.e., are more inclined to respond if properly

“encouraged”.

Basic Assumptions

Due to the presence of two treatments, assumptions are required on the compound assignment mech-

anism. Both treatments are assumed randomized conditional on a set of pre-treatment covariates, so

that:

Assumption 1

T,Z ⊥⊥ S(0, 0), S(0, 1), S(1, 0), S(1, 1), Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1) | X
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and 0 < Pr(T = t, Z = z |X) < 1 (t = 0, 1; z = 0, 1).

Assumption 1 amounts to assuming that, within cells defined by the values of pre-treatment variables

X, the treatment, T , and the instrument, Z, are randomly assigned or, at least, are assigned indepen-

dently of the relevant post-treatment variables. The second condition is an overlap assumption which

guarantees that in large samples we can find treated and control units, as well as units with the different

values of the instrument, for all values of X. Define Sobs =
∑

t=0,1

∑
z=0,1 1{T = t}1{Z = z}S(t, z)

and Y obs =
∑

t=0,1

∑
z=0,1 1{T = t}1{Z = z}Y (t, z) if Sobs = 1 and Y obs = missing otherwise, where

1(.) is the indicator function.

Assumption 1 implies the following: (a) S(0, 0), S(0, 1), S(1, 0), S(1, 1)⊥⊥T,Z | X, so that G is

guaranteed to have the same distribution in each treatment−instrument arm, within cells defined by

pre-treatment variables; (b) Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)⊥⊥T,Z | S(0, 0), S(0, 1), S(1, 0), S(1, 1), X,

so that potential outcomes are independent of the treatment and the instrument given the princi-

pal strata. While it is in general improper to condition on Sobs, units exposed to different treat-

ment and/or instrument levels can instead be compared conditional on a principal stratum, G; (c)

Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1) ⊥⊥ T,Z, Sobs | S(0, 0), S(0, 1), S(1, 0), S(1, 1), X, so that, conditional

on a principal stratum, comparison of respondents exposed to different treatment and/or instrument

levels leads to valid inference on causal effects. For the sake of notational simplicity we will omit an

explicit indication of conditioning on X in the sequel.

In order to characterize Z as an instrument, we propose the following exclusion-restriction

assumption:

Assumption 2 Y (0, 0) = Y (0, 1) and Y (1, 0) = Y (1, 1),

which says that the value of the instrument is unrelated to the outcome. We further require that the

instrument Z has some effect on S, both under treatment and under control:

Assumption 3 E(S(0, 1)− S(0, 0)) 6= 0, and E(S(1, 1)− S(1, 0)) 6= 0.

Main Identification Results

We now analyze how the presence of an instrument can be exploited to achieve identification of some

causal estimands. Some identification assumptions can be stated as forms of monotonicity of S:

Assumption 4 S(t, 0) ≤ S(t, 1) ∀ t,

and

Assumption 5 S(0, z) ≤ S(1, z) ∀ z.

Assumption 4 relates to the response behavior with respect to the instrument: for a fixed treatment

level, units responding when Z = 0 would respond also when Z = 1. Assumption 5 relates to the

response behavior with respect to the treatment: for a fixed value of the instrument, units responding

under control would respond also when treated. These assumptions may often be plausible.

Assumptions 4 and 5 reduce the number of strata to 6 (strata 1, 2, 4, 6, 8, and 16), implying that

the strata containing information on causal effects are strata 6, 8 and 16, so that the goal is to isolate

these three strata from the remaining ones.

Under Assumptions 1 through 5, we can derive large sample bounds on the causal effect of T

for the union of strata 6, 8, and 16, which include units reacting to the instrument under control

and/or under treatment (strata 6 and 8) and always respondents (stratum 16). For sake of simplicity,

henceforth we focus on average treatment effects. Note that the same identification strategies could

be used to identify the entire outcome distribution under both values of the treatment for particular

strata.
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Let Ps|t,z = Pr(Sobs = s | T = t, Z = z), s = 0, 1, t = 0, 1 and z = 0, 1, be the conditional

distribution of the observed response indicator given the treatment and instrument values, and define

πj = Pr(G = j), j = 1, 2, 4, 6, 8, 16. In addition, define Etz1(Y
obs) = E(Y obs | T = t, Z = z, Sobs = 1)

and let E≤αtz1 (Y obs) and E≥αtz1 (Y obs) be the conditional expectations of Y obs in the α (0 < α < 1) fraction

of the observed respondents (Sobs = 1) assigned to T = t and Z = z with the smallest and largest

values of the outcome variable, Y , respectively. The following proposition is proved in the extended

web-version of this paper.

Proposition 1 If Assumptions 1–5 hold, then the following bounds on the average treatment effect

for the union of strata 6, 8 and 16 can be derived:

E
≤π6,8,16|111
111 (Y obs)− E011(Y

obs) ≤

E(Y (T = 1)− Y (T = 0) | G ∈ {6, 8, 16}) ≤ E≥π6,8,16|111111 (Y obs)− E011(Y
obs),(1)

where π6,8,16|111 = Pr(G ∈ {6, 8, 16} | T = 1, Z = 1, Sobs = 1) =
P1|0,1
P1|1,1

.

The sampling process allows us to identify the conditional distributions, Ps|t,z, the conditional ex-

pectations Etz1(Y
obs
i ), and the conditional lower and upper trimmed means E≤αtz1 (Y obs

i ) and E≥αtz1 (Y obs
i ),

0 < α < 1. Therefore finding estimators for the bounds defined in Proposition 1 is relatively straight-

forward. For instance, a moment-based estimator can be derived by replacing the means of Y and the

strata proportions by their sample counterparts:

P̂s|t,z =
∑n
i=1 1(Ti=t)1(Zi=z)1(S

obs
i =s)∑

i 1(Ti=t)1(Zi=z)
Êtz1(Y

obs
i ) =

∑n
i=1 1(Ti=t)1(Zi=z)S

obs
i Y obsi∑n

i=1 1(Ti=t)1(Zi=z)S
obs
i

Ê≤αtz1 (Y obs) =

∑[nα]
i=1 1(Ti=t)1(Zi=z)S

obs
i Y obs

(i)∑[nα]
i=1 1(Ti=t)1(Zi=z)Sobsi

Ê≥αtz1 (Y obs) =

∑n
i=n−[nα]+1 1(Ti=t)1(Zi=z)S

obs
i Y obs

(i)∑n
i=n−[nα]+1 1(Ti=t)1(Zi=z)S

obs
i

,

s = 0, 1, t, z = 0, 1, where [nα] is the largest integer not greater than nα, and Y obs
(i) , i = 1, . . . , n, are

the ordered statistics. In small samples, bounds can be wrapped in confidence bands to account for

sampling variability in various ways (e.g., Imbens and Manski, 2004).

The benefit of using an instrument for nonresponse is due to the fact that more information can

be extracted from the data about the causal effects of the treatment. Specifically, in the presence of an

instrument for nonresponse, strata containing information on the causal effects are strata 6, 8 and 16,

which in general include a larger proportion of units than the group of the always respondents without

instrument (stratum 11). The bound on the average treatment effect for the always respondents,

E(Y (1) − Y (0) | S(1) = S(0) = 1), depends on the proportion of the always respondents (see, for

instance, Manski, 2003 and Zhang and Rubin, 2003), as well as the bound on E(Y (1) − Y (0) | G ∈
{6, 8, 18}) depends on the proportion of strata 6, 8, and 16; therefore, when the instrument is not

available or is ignored, we have a loss of information. In other words, the presence of an instrument for

nonresponse provides information on the causal effect also for subjects who, without the instrument,

would not respond under either the standard treatment or the active treatment (i.e., principal strata

10 and 01), but would respond regardless treatment assignment when assigned to Z = 1. If causal

effects are homogeneous, this implies using more information to estimate the same causal estimands

(leading also to a better precision if the instrument is used in a parametric estimation approach). If

causal effects are heterogeneous, this implies estimating an average effect for a larger proportion of

units, which has higher chances to mimic the behavior of the target overall population. Therefore,

when an instrument for nonresponse is available, using it might help identification and estimation of

causal effects. Our discussion suggests that an instrument for nonresponse should be included as a

design variable in the planning phase of the study design.

Bounds in Proposition 1 can be tightened if additional assumptions are introduced, in order

to either reduce the number of strata or state the equivalence of the distribution of Y across some
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strata. Point identification can be also achieved, by combining Assumptions 1-5 with these additional

assumptions. These results are available in the extended web-version of this paper.

Concluding Remarks

In this paper, we tackled the problem of identifying treatment effects when some outcome values

are missing. Identification results were obtained relying on a binary instrument for nonresponse,

within the principal stratification framework. We proposed a set of sufficient assumptions allowing

identification of causal estimands for some subpopulations of units (union of principal strata) defined

by the nonresponse behavior under all possible combinations of treatment and instrument values. Our

results suggest that an instrument for nonresponse should be included as a design variable in the

planning phase of the study design, and it should be considered in drawing causal inference in the

presence of missing outcome data, whenever it is available.

Using principal stratification, the result of inference is usually a local causal effect. An issue that

often arises regarding the principal stratification approach is that we cannot univocally identify the

group the causal effect refers to. Note, however, that the fact that proper causal effects can only be

identified for latent subgroups of units is a limitation created by the missing mechanism, rather than a

drawback of the framework of principal stratification. In this paper, the focus on these subgroups was

primarily driven by our goal of providing valid causal effect estimates in the presence of nonignorable

missing data under a set of credible assumptions. These subgroups may not be ex ante the most

interesting ones, but the data is in general not informative about effects for other subgroups without

extrapolation.

Supplementary Material: The extended web-version of this paper is available under the Working

Papers link at the website http://www.ds.unifi.it.
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