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Survey Data

Survey data typically have certain characteristics which must be accounted for in their analysis.

These characteristics include unequal selection probabilities, clustering, and missing data (including

non-response). In this paper, we focus only on unequal selection probabilities and assume full response.

For a more complete discussion see, for example, Pfeffermann & Sverchkov (2009).

Consider a model of interest with a response (dependent) variable y and a vector of explanatory

(independent) variables x, and let yi and xi be the values associated with unit i. The sample condi-

tional distribution fs(yi|xi), defined in (1) below is usually different from the population conditional

distribution fp(yi|xi).

Indeed, by Bayes Rule,

(1) fs(yi|xi)
def
= fp(yi|xi, i ∈ s) =

Pr(i ∈ s|yi, xi)
Pr(i ∈ s|xi)

fp(yi|xi).

Consequently, unless Pr(i ∈ s|yi,xi) = Pr(i ∈ s|xi) for all i, the sample and the population

distributions are different: fs(yi|xi) 6= fp(yi|xi). Therefore, a possible approach is to augment the set

of explanatory variables by variables that determine the sample design (‘design variables’), which we’ll

denote by z. If Pr(i ∈ s|yi,xi, zi) = Pr(i ∈ s|xi, zi), modelling yi on xi and zi mitigates the effect

of the sampling design on the distribution. That leaves, however, additional explanatory variables in

the model that may pose difficulty in their interpretation. Assuming the conditional distribution of

f(zi|xi) is known, one may integrate out zi from the model:

(2) fp(yi|xi) =

∫
fp(yi|xi, zi)fp(zi|xi) dzi,

an approach proposed in a recent paper by Gelman (2007). See also an earlier paper by Skinner (1994)

where the special case of zi = wi, the sampling weights was treated. (There have been a few variants

of this approach in the literature—see Pfeffermann (forthcoming) for a discussion.)

In the case of linear regression, we first fit a model

(3) E(yi|xi, zi) = β0 + β′1xi + β′2zi + β′3ri,

where ri is a vector of x · z interactions. Then, taking expectation conditional on xi alone, we obtain

(4) E(yi|xi) = β0 + β′1xi + β′2E(zi|xi) + β′3xi · E(zi|xi).

In the last stage, an estimate of E(z|x) is needed. To do that, Gelman (2007) first estimates fp(xi|zi)
from the sample data, then assuming known fp(zi) he obtains E(zi|xi) by application of Bayes’ Rule.
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remark 1: For the sake of simplicity, we limit the discussion below to joint distributions unit-level

variables. For example, under a more realistic scenario, the inclusion probability of unit i may depend

on other units’ values of z. A more general discussion requires replacing the subscripts i by s where,

for example zs, or even zu (sample or population values) replaces zi.

remark 2: Rubin (1985) suggests that the sampling weights wi may be used in place of the z variables

when wi are an adequate summary of z. See Rubin (1985) for definition and details.

In the case where the objective is to fit a linear model to the response variable, applying (2)

to the ‘intermediate’ model (3) may be unsatisfactory since the resultant model will in general, be

non-linear. Furthermore, the integration (2) may not be straightforward.

Proposed Approach

We consider two scenarios: (1) Known population values {xi, zi}i∈U and (2) {xi, zi} are only observed

for the sample units.

(1) Known {xi, zi}i∈U
This assumption is realistic when these values are part of census data or administrative records. First,

we fit the intermediate model (3). This allows us to predict a value ỹi, say, for each unit i ∈ U in the

population. For sampled units i ∈ s, ỹi = yi is the observed value. For the non-sampled units i 6∈ s,
we have the following options, depending on the purpose of the model-fitting:

1. Predict ỹi = β̂0 + β̂′1xi + β̂′2zi + β̂′3ri

2. Predict ỹi as above with added noise drawn from a normal distribution N(0, σ̂2) where σ̂2 is the

estimate of the variance of the residual error when regressing y on (x, z).

3. Similar to Option 2 above, but with a residual drawn with replacement from estimated residuals

amongst sample units with similar covariates.

We now can fit a linear regression model to the data {ỹi,xi, zi}i∈U with ỹi as the dependent variable.

Clearly Option 1 above yields more precise estimates than Options 2 & 3. However, Options 2 and

3 allow prediction of the response variable for non-sampled units. In contrast, predictions ỹi using

Option 1 will be deterministically defined by (xi, zi).

(2) Unknown {xi, zi}i∈U
In the case where the values {xi, zi}i∈U are unknown for non-sampled units, we need to obtain

predictions {x̂i, ẑi}i∈U for them. This may be carried out by sampling N − n units with replacement

from the sample values, with probabilities proportional to (wi − 1)/(
∑

j(wj − 1) on each draw, where

wi is the sampling weight (inverse of the selection probability) of unit i (see Pfeffermann and Sikov,

2011 for justification). We now have an imputed population {xi, zi}i∈S∪{x̃i, z̃i}i/∈S . Next, we proceed

as in the known covariates and design data above. Predict ỹi for the non-sampled units, to obtain

{y,xi, zi}i∈S ∪ {ỹ, x̃i, z̃i}i/∈S . Finally, we fit a linear regression of y on x to obtain our estimated

regression coefficients. Put in another way, the proposed estimate is (X̃ ′X̃)−1X̃ ′ỹ, where the rows in

X̃ and the componets in ỹ corresponding to sampled units are thosed of the observed units, and those

corresponding to unobserved units are those imputed.
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Variance Computation

We consider the case where the finite population values of x and z are known. let Xu be the matrix

whose rows are the population units’ x variables, including 1 for the intercept and let Ru be the matrix

whose rows are the finite population values of (x, z) and their interaction terms. Let Xs and Rs be the

rows in Xu and Ru corresponding to the sample units, and Rc (Xc) the rows in Ru (respectively, Xu)

corresponding to the non-sampled units. Denote by ys = (y1, . . . , yn)′ the vector of the n observed

values of the response variable.

Then the proposed estimate is

β̂ = (X ′uXu)−1X ′u

(
ys

Rcγ̃ + εc

)
= (X ′uXu)−1(X ′s, X

′
c)

(
ys

Rcγ̃ + εc

)
= (X ′uXu)−1X ′sys + (X ′uXu)−1X ′cRcγ̃ + (X ′uXu)−1X ′cεc

where γ̃ is the estimated regression coefficient of the intermediate model (3), and where εc is a vector

of added random noise (could be zero, if no noise is added). From a model-based point of view, the

first term of the right-hand side is fixed. The second and third terms are of the form Aγ̃ and Bεc for

some A,B, are independent. Estimation of the variance of γ̃ is straightforward, and the variance of

the added noise is also known.

From a randomization point of view the first term is random. Note that we can write X ′sys =

(X ′sXs)(X
′
sXs)

−1X ′sys = (X ′sXs)β̂ols (where β̂ols is the OLS estimate of β), so its variance can easily

be estimated as well.

Example and a Small Simulation

Stratified Random Sample

Consider the case of a stratified sample, where in each stratum h of size Nh (h = 1, . . . ,H), a random

sample of nh units is drawn without replacement. Assume that within stratum, the sample selection

process is conditionally independent of yi, given xi. In other words, in this example,

(5) f(yi|xi, hi, i ∈ s) = f(yi|xi, hi).

The design variables in this case include the H − 1 stratum identifiers defined by zh,i = 1 if unit i is

in stratum h, zh,i = 0 otherwise (h = 1, . . . ,H − 1). Because of (5), we do not need to include other

design variables as covariates. In this case, A = (X ′uXu)−1X ′u(Xu, Zu, DxZu) = (I2,KG,KH), where

(6a) K =

(
N

∑
U xi∑

U xi
∑

U x
2
i

)−1
and where

(6b) G =

(
N1 · · · NH−1∑
U1
xi · · ·

∑
UH−1

xi

)
and H =

(∑
U1
xi · · ·

∑
UH−1

xi∑
U1
x2i · · ·

∑
UH−1

x2i

)
.

Small Simulation Study

Following Pfeffermann (forthcoming), we simulate a population as follows.

1. The x variables were generated from a Gamma(1, 2) distribution; N = 1, 000 observations were

generated. Each value was rounded to the nearest integer in the interval [0, 5].
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2. The units were partitioned to five strata Uh, (h = 1, . . . , 5) by means of independent draws

for each unit i from Multinomial(1,p) where p = (p1, . . . , p5)
′, and ph = Pr(i ∈ Uh) =

exp(bh)
/∑5

k=1 exp(bk) , and where bh = 1
3(h − 1), h = 1, 2, 3, 4, 5. (Note that b1 = 0 and so

h = 1 is the reference level.) Let hi be the stratum of unit i. Note that hi is random.

3. The response variable yi is independently drawn as

yi = 2 + xi + (1 + 0.2xi)ξi + εi, εi
iid∼ N(0, 1),

where ξi = 0.2
∑5

h=1 zh,i/ah(xi)− 1. Note that E(ξi) = 0 and Var(ξi) = 0.22
∑5

h=1 1/ah(xi)− 1

and therefore, E(yi|xi) = 2+xi and Var(yi|xi) = (2+xi)
2Var(ξ)+1 = (2+xi)

2(0.22
∑5

h=1 1/ah(xi)−
1)+1. Also note that the random component of yi, (1+0.2xi)ξi +εi is not normally distributed.

4. A measure of size was defined as mi = max(min(|zi|1.5, 9), 1), where zi ∼ N(1 + xi, 1).

5. Samples of sizes 60 each were drawn from each stratum without replacement and with systematic

proportional to size. Thus the total sample size was 5× 60 = 300.

6. One thousand finite populations were generated according to the scheme above, repeating steps

2, 3 and 4. Step 1 was performed only once. In other words, the xi’s were common to all the

populations, while the stratum indicators zh,i, and the response variable yi were generated again

for each of the 3,000 finite populations, and then a single sample was drawn from each new

population.

Note that this set up defines an informative sampling design, i.e., the selection probabilities and the

model outcome variable are related. This is due to the stratification and the model independent

variable being related, and the unequal selection probabilities across the strata. Also note that the

measure of size mi is a function of xi alone, and therefore f(yi|xi, hi,mi) = f(yi|xi, hi). Therefore,

only the stratum indicator need to be included in the model in our proposed method

We considered the following estimation methods: (a) ordinary least squares (OLS), (b) probability

weighted least squares (PWLS), (c) the proposed approach, with unknown x, z population values.

The model (4) fitted by the method Gelman (2007) is in general non-linear and does not produce

estimates of the regression coefficients. Figure 1 below shows an example of one such fitted model

(the piecewise line) and the ‘true’ model (the straight line). Therefore, its performance could not

be directly compared to these methods. We did, however compare it with the other methods by the

following measures:

wrmse
def
=

√
(
∑
i∈s

wi)−1
∑
i∈s

wi(ŷ − yi)2,

wmae
def
= (
∑
i∈s

wi)
−1
∑
i∈s
|ŷ − yi)|,

The wrmse measure is an estimates of the finite population quantity
√
N−1

∑
i∈U (ŷ − yi)2. Because

PWLS is designed to minimize the wrmse measure, we’ve included also the weighted mean absolute

errors measure wmae.
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Figure 1: Example of Fitted Model by Gelman (2007) Method

Simulation Results

In Table 1 below the mean of the point estimates for both regression coefficients, the empirical standard

errors, and the square roots of the variance estimates, both model-based and randomization-based, are

shown. For estimating the variance of an estimator β̂q = (X ′sQsXs)
−1X ′sQsys of the linear regression

coefficient, where Qs = diag(q1, . . . , qn) is a diagonal matrix of weights, two estimators can be used: (1)

a model-based estimator given by v̂m(β̂q) = (X ′sQsXs)
−1X ′sQ

2
sdiag(e2i )Xs(X

′
sQsXs)

−1, where the ei
are the residuals, Xs is the matrix whose rows are the sample units x variables (including 1 for the inter-

cept), and (2) a randomization variance estimator given by v̂r(β̂q) = (X ′sQsXs)
−1v̂r(Ê)(X ′sQsXs)

−1,

where v̂r(Ê) is the randomization (co)variance estimate of the estimated total, Ê =
∑

i qixiei.

Table 1: Estimation of the regression coefficients

Method β0 β1 seemp(β0) seemp(β1) s̄em(β0) s̄em(β1) s̄er(β0) s̄er(β1)

Super population 2.000 1.000 0.000 0.000 - - -

Census 2.000 1.000 0.026 0.012 - - -

OLS 2.240 1.049 0.134 0.049 0.137 0.048 0.133 0.048

PWLS 2.000 1.000 0.167 0.059 0.166 0.055 0.164 0.054

Proposed 2.000 1.001 0.140 0.053 0.124 0.040 0.124 0.040

As expected, the OLS method is biased. Both the PWLS and the proposed method are unbiased.

However, the proposed method is more efficient, as evident from the empirical standard errors. This

is due to the measure of size mi being a function of xi alone, so that f(yi|xi, hi,mi) = f(yi|xi, hi), and

therefore not required in the proposed method. In contrast, use of the weights in the PWLS adds to
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its variance. Note that the variance estimates for the proposed method are too low. This is probably

due to ignoring the fact that the unobserved covariates and design variables were sampled from the

observed data, and the added variance due to that was not accounted for.

As mentioned above, the Gelman(2007) method does not yield estimated regression coefficients. This

Table 2 below compared the three methods and Gelman’s method based on their WRMSE and WMAE.

Table 2: Prediction of the response variable

wrmse wmae

OLS 1.256 1.101

PWLS 1.206 0.959

Gelman 1.209 0.961

Proposed Method 1.208 0.961
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