Int. Statistical Inst.: Proc. 58th World Satistical Congress, 2011, Dublin (Session CPS027) p.6523

Covariance matrix of the bias-corrected maximum likelihood estima-
tor in generalized linear models

Barroso, Licia

University of Sao Paulo, Department of Statistics
Rua do Matdo, 1010

Sao Paulo (05508-090), Brazil

E-mail: lbarroso@ime.usp.br

Cordeiro, Gauss
Federal University of Pernambuco, Department of Statistics
Recife (50740-540), Brazil

E-mail: gausscordeiro@uol.com.br

Botter, Denise

University of Sao Paulo, Department of Statistics
Rua do Matdo, 1010

Sao Paulo (05508-090), Brazil

E-mail: botter@ime.usp.br

Cavalcanti, Alexsandro

Federal University of Campina Grande, Department of Mathematics and Statistics
Campina Grande (58109-970), Brazil

E-mail: alexbc@dme.ufcg.edu.br

Introduction

Generalized linear models (GLMs) (Nelder and Wedderburn, 1972) are regression models typi-
cally fitted by maximum likelihood. The methods for analysis of a GLM are based on the asymptotic
properties of the maximum likelihood estimators (MLEs). Standard references such as McCullagh and
Nelder (1989) and Fahrmeir and Tutz (1994) discussed both theory and applications of these models.

The random variables Y7,...,Y, in GLMs are assumed independent and each Y;, [ = 1,...,n,
has a density (or probability) function in the family of distributions

(1) m(y; 01, 6) = exp{olyb —b(6)] + aly, )},

where a(-,-) and b(-) are known functions. The mean and the variance of Y; are
E(Y}) = = db(6;)/d6; and Var(Y;) = ¢~ 'V,

where V; = dy;/d6; is called variance function and 6; = [ Vrldul = ¢q(w) is a known one-to-one
function of the mean y; that varies in a subset of IR. The parameters ¢; and ¢ are called the canonical
and precision parameters, respectively. The precision parameter ¢ is assumed to be a known constant.
If ¢ is unknown, we assume that it can be replaced by a consistent estimate in order that the function
(1) represents the exponential family of distributions with natural parameter ;. The inverse of ¢ is
the dispersion parameter of the distribution. The choice of the variance function V; determines the
interpretation of ¢. We consider GLMs having a systematic component defined by c¢(u) = n = Xp3,
where X is a specified n X p model matrix of full rank p < n, G = (51,...,Bp)T is a vector of
)T

unknown parameters to be estimated, g = (p1,..., ftn), 7= (N1,...,mn) " is the linear predictor and

z) = (p1,...,7) is the Ith row of X. We consider that d(.) is a known one-to-one continuously twice
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differentiable monotonic function called the mean link function. The MLE B of B can be calculated
using the Newton-Raphson’s method.

Some attempts have been made to develop second-order asymptotic theory for GLMs in order
to have better likelihood inference procedures about the vector of linear parameters 5. Second-order
bias correction in GLMs was investigated by Cordeiro and McCullagh (1991). They showed how the
asymptotic bias vector of the MLE 3 can be obtained without iterative computation by means of a
supplementary weighted linear regression calculation. Further, Cordeiro (2004) obtained an expression
for the n=2 asymptotic covariance matrix of B

Ferrari et al. (1996) and Pace and Salvan (1997) derived second-order bias-corrected MLEs in
general one-parametric models. They also obtained closed-form expressions for the variance of the
corrected estimates. Pace and Salvan (1997) noted that “the general formula for the n~2 asymptotic
covariance matrix of the MLE (Peers and Igbal, 1985) allows one to obtain a multiparameter general-
ization of the n~2 asymptotic covariance matrix of the bias-corrected estimator”. Following this point
and based on the works by Cordeiro and McCullagh (1991) and Cordeiro (2004), we obtain the n =2
asymptotic covariance matrix of the (second-order) bias-corrected MLE of  in GLMs.

The plan of the paper is as follows. In Section 2, we obtain a general formula for the n~2
asymptotic covariance matrix of the bias-corrected MLE of 5. We demonstrate that this matrix is
given by a sum of terms that depend on the n~? asymptotic covariance matrix of the MLE. In Section
3, we present a modified Wald statistic to test the vector 3 that is built up from the n~2 asymptotic
covariance matrix of the bias-corrected MLE. In Section 4, we develop some simulations to investigate
the covariance of the bias-corrected MLEs in GLMs based on second-order asymptotics and to motivate
the use of the proposed formula. Section 5 provides some conclusion remarks.

n~2 Asymptotic Covariance Matrix

In this section, we obtain the asymptotic covariance matrix up to order n~2 of the bias-corrected
MLEs (which are of order n~!) in GLMs. Denote the total log likelihood function for 3 by ¢ = ¢(3) and
the joint cumulants of log- likelihood derivatives by ks = E(0%¢/93,08s), krs = E(0/03,00/00s),
Krst = E(0%0/0B,08:0B1), kr st = E(00)0B,0%0/0Bs0B:), ete. All K’s refer to a total over the sample
and are, in general, of order n. The total expected information matrix K3(3) has elements k, s = —kys,
and let k™® = —k"® be the corresponding elements of its inverse. When n increases, we assume that
the MLE B converges to # and that its asymptotic distribution is multivariate normal with mean 3
and covariance matrix Cov(j3) = Kgl(ﬂ):¢_1(XTWX)_1, Where W = diag{(du/dn)>V~1}.

Let 3 = 3 — d(3) be the bias-corrected MLE of order n™!, where d(3) denotes the bias of order

1 of 3. Let B3, be the rth component of the vector 3. Then, ﬁT B, — d’”(ﬂ) where dr(B) is the rth
component of d(f3).

From the book of Pace and Salvan (1997) (p. 360), we can write

(2) d(p) = +Zd’" By = Bo) + Op(n2),
where
T adr rw , .sy,.tu
d, = a3 = Z {E"EYE (Kstu + 26stu) (Fowy T Ko,wy)
v w787y7t7u

1
+ 2ﬁrs’itu(ﬁstuv + Rstu,v + 2’istv,u + 2(/{st,uv + /fst,u,v))}

1

is a term of order n~* and

s tu _
ZK /{stu+2/€st,u)a r=1,..,p

s,t,u
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Here, we obtain a closed-form expression up to order n=2 for the (r,s)th component of the
matrix Cov(() in GLMs, i.e.,

[COV(B)]TS = E[(Br - ﬁr)(Bs - ﬁs)]
We have
[Cov(Drs = BB —d"(B) — Br)(Bs — d*(B) —
E{[(B, — B:) — d"(B)][(Bs — Bs) — &°(5 )]}
(3) = E[(BT - /Br)(ﬁs - ﬁs)] - [ ( )
— E[d"(B)(Bs — Bs)] + Eld"(B)d (B

From (2) we have
E[d*(B) (6, - 6,)] = E{(ﬁ [ +Zd$ By — By) + Op(n” )H
= d*(B)d"(B) + de] —K™) + o(n™?)

and E[d"(6)d*(8)] = d*(8)d" (B) + o(n~?). )

Thus, expression (3) can be written up to order n™* as
(4) [Cov(B)ls = El(Br = B,)(Bs = Bs)] = d"(B)d*(B) + D_dy () + D_d5(+").

The first and second terms of equation (4) is the covariance up to order n =2 of B if the parameter
¢ is known, which was obtained by Cordeiro (2004). It is given in matrix notation by

GHXTWX) L4 2PAPT + o7 2(XTWX) AKX TWX) !

where A = HZ,+ 3FZYF+GZF — GZ<2>G P=(X"WX)'XT",Z=XP, H=diag{hy, .., hn},
1
he = —piyd! Ve — w2V Vg + v,y / Vz , wp = dpg/dng, dgue/dm;, 7= dPpug/dn,
1 1
VY = AVe/dpe, F = diag{f1, .. fa}. fo =V i, G = diag{gy, .. gn}, g0 = Vi il = V72V i
and Z®) = Z ® Z, where ® denotes the Hadamard product. Further, the index d indicates that the
diagonal matrix is obtained from the original matrix. The matrix A is defined by

n
A=>" Ay,
=1
where Ay = (fg—i—gg)%‘gx;, cr = 6JZ5Z,3dF1, x; = (z¢p,...,xgp) is the fth row of the covariate matrix

X, Zg=X(X"WX)™1XT § is a vector of dimension (n x 1) with one in the position ¢ and zero in
the other positions and 1 is an (n x 1) vector of ones.
The term Zdi(/{”’) can be expressed in matrix notation as
v

1
(XTWX) INXTWX) - —PDZ,PT,

@? 297

where D = diag {V—Zv(l) 2 // —_y-1 / /// —_y-1 //2}
Then, the asymptotic covariance matrix up to order n=2 of the bias-corrected MLE reduces to
Cov(B) = ¢ Y XTWX) ™+ 6 2PAPT + 36 2(X WX) 'AXTWX)™
(5) — ¢ 2PDZ4P".
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A Modified Wald Test

Here, we present two alternative versions of the classical Wald statistic: the corrected statistic by
replacmg only the estimate B by the bias-corrected estimate 3 and the corrected statistic by replacing
¢ by 3 and the inverse of the information matrix by the covariance matrix of 3 given by (5).

Suppose that we are interested in testing all elements of the parameter 8. In this situation, the
null hypothesis is Hy : 8 = 89 and the alternative hypothesis H; : 3 # 3, where 5 is a specified
vector of dimension p. The classical Wald test statistic is

Wo = (8- KsB)(5 -6,

where Kg(3) = ¢(X TWX) is determined at the MLE 3 of S.
We can modify this statistic by substituting the estimate B by its bias-corrected estimate 3
which implies that

Wa = (5B Ks(5)(5 — )

Another modified statistic can be constructed by substituting B by the corresponding bias-
corrected estimate [ and using its covariance matrix (obtained in the previous section) evaluated at
G. In this case, the statistic becomes

We = (3-) T {cov(B)} (3-8,

Simulation Results

In order to check our theoretical results, we perform two simulation experiments. First, we
consider a gamma regression model with systematic component p; = exp(fBy + f1x1; + B2x9), where
the values of the covariates x1; and x9;, for I = 1,...,n, were chosen as random draws from a uniform
U(0,1) distribution, their values being held constant throughout the simulations with equal sample
sizes. The number of observations was set at n = 10,20, 30 and 40 and the precision parameter was
fixed at ¢ = 2. The true values of the linear parameters for the simulations were taken as Gy = 1,
f1=1and By = —

The simulation was performed using the R programming environment. We carried out size
simulations based on 10,000 replications. In each of these replications, we fitted the gamma model
and computed the MLE B, the bias-corrected estimate (3, the asymptotic covariance matrices COV(B)
and COV(B) evaluated at 3 and 3, respectively.

The first and third entries in Table 1 are the sample means of the asymptotic expansions based
on the 10,000 replications, i.e.

| 10000 A 10,000 )
C d Cov(3).
10, 000 ; ov(f) and I5-555 ; ov(B)

The second entry in Table 1 refers to the sample means of the empirical mean square errors
(EMSEs) evaluated at the true value of 3 and based on the 10,000 replications, i.e.

10,000
1

30) _
10, 000 ; (B = B).

The figures in Table 1 show that the covariances obtained from equation (5) are closer to the
sample means of the EMSEs of S, ..., 3(10:000) than those quantities obtained from the expansion
of COV(B). Further, if we consider these quantities in absolute values, we note that the variances
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and covariances of the bias-corrected estimators are larger than those quantities of the uncorrected
estimators.

Next, we consider a simulation experiment to show the performance of the Wald statistics Wy,
W, and W, discussed in Section 3. The null hypothesis Hy : ﬂ((]o) =1, 5%0) =1and 650) = —1 is tested
against the alternative hypothesis of violation of at least one equality. The number of observations
was set at n = 10,20, 30,...,100 and we report the results for three different nominal significance
levels, namely o = 0.01,0.05 and 0.10. The estimated sizes of the three Wald tests are given in Table
2, where the entries are percentages.

The figures in Table 2 reveal the better performance of the statistic W, compared with the
statistics Wy and W,,, and show the importance in correcting not only the MLE B but also take into
account the covariance of the bias-corrected estimator 3. The three statistics are liberal, over-rejecting
the null hypothesis more frequently than expected based on the selected nominal levels, specially for
small sample sizes. When n increases, the empirical sizes of the three statistics converge to the true
nominal levels and the values of the statistics Wy and W,,, converge to the value of W..

Table 1: Cov(() evaluated at 3, EMSE(3) and Cov(() evaluated at [3

n =10 n =20

Bo b1 B2 Bo b1 B2
0.63166 -0.48998 -0.69830 || 0.27125 -0.25231 -0.22918
By | 0.70838 -0.54588 -0.78027 || 0.29176 -0.26860 -0.24963
0.70199 -0.55431 -0.78011 || 0.29294 -0.27414 -0.25052
0.68931  0.29104 0.35014  0.14293
By 0.76220  0.32982 0.36884  0.15764
0.77835  0.33054 0.37606  0.15943
1.15772 0.30545
s 1.29040 0.33013
1.28545 0.33062

n =30 n = 40

Bo B Ba Bo B Ba
0.13183 -0.10180 -0.12912 || 0.09770 -0.07414 -0.09273
Bo | 0.14195 -0.10864 -0.13982 | 0.10308 -0.07684 -0.09812
0.13763 -0.10758 -0.13541 || 0.10055 -0.07659 -0.09610
0.23933  -0.01453 0.13910  0.00690
By 0.24785  -0.00902 0.14365  0.00764
0.25167 -0.01437 0.14361  0.00729
0.25562 0.17390

s 0.27003 0.18252
0.26736 0.18006

Concluding Remarks

In recent years there has been considerable interest in finding closed-form expressions for second-
order biases and covariances of maximum likelihood estimators (MLEs) in some classes of regression
models which do not involve cumulants of log-likelihood derivatives. We consider the important class
of generalized linear models (GLMs) and derive a general formula for the second-order asymptotic
covariance matrix of the bias-corrected maximum likelihood estimators of the linear parameters. The
usefulness of the formula is illustrated in order to estimate the covariance matrix of these estimators
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and to construct improved Wald test statistics.

We define two corrected statistics as alternative to the classical Wald statistic. The performances
of the three statistics in GLMs are evaluated through simulation studies. The simulations indicate
that the elements of the inverse of the expected information matrix underestimate the variances and
covariances of the bias-corrected estimator @ We can also obtain more precise estimates of these
variances and covariances if we use the elements of the bias-corrected estimate. We examine the
performance of the Wald test statistic for testing the g parameter of a GLM with known dispersion.
Instead of using the uncorrected estimate B in the estimated inverse of the expected information
matrix, we can construct improved Wald statistics by considering the bias-corrected estimate 3 and

its estimated second-order covariance matrix.

Table 2: Estimated sizes of the three Wald tests Wy, W, and W,.

nla%) | Wo Wn We | n |a%)] Wo W W
1.0 | 3.09 239 1.99 1.0 | 1.19 111 1.05
10| 50 | 882 7.63 642 | 60 | 50 | 570 541 5.20
10.0 | 1471 13.05 11.40 10.0 | 10.96 10.73 10.35
1.0 | 1.87 154 121 1.0 | 122 112 108
20| 5.0 | 703 619 555 | 70 | 50 | 566 537 5.19
10.0 | 1245 11.96 11.03 10.0 | 11.15 10.98 10.69
1.0 | 172 151 125 1.0 | 117 1.09 101
30| 5.0 | 650 599 543 | 80 | 5.0 | 554 541 522
10.0 | 11.93 11.33 10.50 10.0 | 11.02 10.73 10.46
1.0 | 145 129 121 1.0 | 129 119 1.15
40| 50 | 638 598 565 | 90 | 50 | 558 546 5.35
10.0 | 11.51 11.13 10.63 10.0 | 10.78 10.54 10.30
1.0 | 142 119 1.07 1.0 | 124 111 1.09
50| 5.0 | 577 556 531 |100| 50 | 542 539 522
10.0 | 11.04 10.99 10.38 10.0 | 10.16 10.15 9.97
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