
Random E¤ect Bivariate Survival Models and Stochastic Comparisons

Ramesh C.Gupta
Department of Mathematics and Statistics

University of Maine
Orono, ME 04469-5752

Key words and phrases: Frailty models, environmental e¤ect models, hazard
gradient, bivarate multiplicative model, shared frailty model.

Abstract In this paper, we propose a general bivariate random e¤ect
model with special emphasis to frailty models and environmental e¤ect
models including some stochastic comparisons. The relationship between
the conditional and the unconditional hazard gradients are derived and
some examples are provided. We investigate as to how the well known

stochastic orderings between the distributions of two frailties translate into
the orderings between the corresponding survival functions. These results
are used to obtain the properties of the bivariate multiplicative model and

the shared frailty model.

1. INTRODUCTION

The random e¤ect models are used in di¤erent deciplines. We shall present
our results in the context of survival analysis or more speci�cally, in the context
of frailty models where the frailty is modeled as an unobservable random e¤ect.
Clayton (1978) and Clayton and Cuzick (1985) introduced the proportional hazard
frailty model, where a group of observations is assigned a random e¤ect that
acts multiplicatively on the baseline hazard function. The proportional hazard
frailty model implies conditional independence- conditional on the frailty terms,
the event times are independent. However, unconditionally, they are dependent.
Frailty Models
As is well known, a particular useful tool in handling heterogeneity unexplained

by the observed covariates is the " frailty model" introduced by Vaupel et al.
(1979). The classical frailty model is given by

�(tjv) = v�0(t); t > 0; (1.1)

where �0(t) is the baseline hazard independent of v:

It is well known that the choice of frailty distribution strongly a¤ects the esti-
mate of the baseline hazard as well as the conditional probabilities, see Hougaard
( 1984, 1991, 1995, 2000), Heckman and Singer(1984) and Agresti et al. (2004). ).
In this connection, Gupta and Kirmani (2006) investigated as to how well known
stochastic orderings between distributions of two frailties translate into orderings
between the corresponding survival functions. More recently. Gupta and Gupta
(2009) studied similar problem for a general frailty model which includes the
classical frailty model (1.1) as well as the additive frailty model.
For the model (1.1), the overall population hazard function �(t) is related to

the baseline hazard function �0(t) by the relation

�(t) = �0(t)E(V jT > t)
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Since

d

dt
E(V jT > t) = ��0(t)V ar(V jT > t);

see Gupta and Gupta (1996), �(t)=�0(t) is a decreasing function of t. It can be
seen that if E(V ) � 1; �(t) � �0(t); t > 0; or equivalently G(t)=F (t) is decreasing
on [0;1) where G(t) is the baseline survival function.
In this paper, we shall study a general bivariate frailty model and present

some stochastic comparisons using di¤erent frailty distributions of the frailty. To
do so, we de�ne the bivariate hazard functions as follows:
Let T1 and T2 be two dependent random variables having absolutely continuous

bivariate survival function F (t1; t2) = P (T1 > t1; T2 > t2): Then the hazard (
failure) rates �(i)(t1; t2); i = 1; 2 de�ned below are often used in demography,
survival analysis and biostatistics when analyzing bivariate survival data. These
are

�(i)(t1; t2) = �
@

@ti
lnF (t1; t2); i = 1; 2: (1.2)

Clearly �(1)(t1; t2) is the hazard rate of T1 given T2 > t2: Likewise �
(2)(t1; t2) is

the hazard rate of T2 given T1 > t1: The vector (�
(1)(t1; t2); �

(2)(t1; t2) ) is called
the hazard gadient. It is well knwon that the hazard gradient determines the
survival function uniquely. Thus, we shall consider the general bivariate frailty
model

�(i)(t1; t2jv) = �(i)(t1; t2; v); i = 1; 2; (1.3)

where v is the frailty associated with an individual. As mentioned earlier, our aim,
in this paper, is to develop the properties of the general bivariate frailty model
(1.3) and obtain some results for the stochastic comparisons using di¤erent frailty
distributions. As a special case, we shall obtain results for the classical bivariate
frailty model and the shared frailty model.

2. GENERAL BIVARIATE FRAILTY MODEL

Consider a general bivariate frailty model de�ned by the joint survival function
F (t1; t2jv); of a two unit system, where v is the frailty e¤ect associated with the
two variables. De�ne

�(i)(t1; t2jv) =
f(tijTj > tj ; v)
F (tijTj > tj ; v)

; i 6= j; 1; 2:

That is �(i)(t1; t2jv) is the failure rate function of the ith unit with jth(i 6= j)
unit surviving at time tj ; conditional on the frailty varaiable V:
If h(v) denotes the pdf of the random environmental e¤ect V , then the uncon-

ditional joint survival function is

F (t1; t2) =

Z 1

0

F (t1; t2jv)h(v)dv;

The population level failure rate function is
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�(i)(t1; t2) =
f(tijTj > tj)
F (tijTj > tj)

; i 6= j; 1; 2:

In the following, we show that the population level hazard components are the
averages of the conditional hazard components.

Theorem 2.1. The population level failure rate function of the ith unit in a
two unit system with jth unit of �xed age tj is the expected value of �

(i)(t1; t2jv)
with respect to the conditional distribution of the frailty e¤ect V given T1 > t1
and T2 > t2: That is

�(i)(t1; t2) = EV jT1>t1;T2>t2 [�
(i)(t1; t2jv)]; i = 1; 2:

Under a very mild condition, the following result addresses the monotonicity
of the distribution (survival) function of the random e¤ect as a function of the
ages of the two units.

Theorem 2.2. If �(i)(t1; t2jv) is an increasing function of v; i = 1; 2; then
H(vjT1 > t1; T2 > t2) (H(vjT1 > t1; T2 > t2)) is an increasing (decreasing function
of ti; where

H(vjT1 > t1; T2 > t2) =
R v
0
F (tijTj > tj ; u)h(u)du
F (tijTj > tj)

; i 6= j = 1; 2:

Corollary 2.3. If �(i)(t1; t2jv) is an increasing function of v; i = 1; 2, then
E(V jT1 > t1; T2 > t2) is decreasing in ti; i = 1; 2:

Remark 2.1. The statement in the above Corollary is a precise statement of the
heuristically obvious fact that the weaker units in the population fail earlier than
the others so that the remaining units are more robust than the rest.

The following results compare the frailty distribution of two groups, one with
Ti > ti1 and Tj > tj and the other with Ti > ti2 and Tj > tj , ti1 < ti2; i 6= j; i =
1; 2:

Theorem 2.4. If �(i)(t1; t2jv) is an increasing function of v; then V jTi > ti2; Tj >
tj �LR V jTi > ti1; Tj > tj ; 0 < ti1 < ti2; i = 1; 2:

The following result shows how the ordering between two frailties are preserved
for surviving individuals.

Theorem 2.5. Let V1 and V2 be two frailties random variables such that V2 �LR
V1: Then V2jT1 > t1; T2 > t2 �LR V1jT1 > t1; T2 > t2:

3. COMPARISONS OF FRAILTY MODELS

There is no �rm basis for choosing the probability distribution of the frailty
random variable V: It is , therefore, important to see how the overall survival func-
tion of the ith; unit, i = 1; 2 responds to the change in the probability distribution
of V: Our main objective, in this section, is to see how some of the well known
stochastic orderings between V1 and V2 translate into the orderings between the
component lifetimes.
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Theorem 3.1. Let �(i)(t1; t2jv) be an increasing function of v > 0; i = 1; 2:If
V2 �LR V1; then (T11; T21) �WFR (T12; T22):

The following result can be easily established

Theorem 3.2. Suppose the conditional joint pdf of Ti and V given Tj > tj ; i 6=
j = 1; 2 is RR2: Then
(a) V is stochastically decreasing in right tail with respect to Ti: That is

H(vjTi > ti; Tj > tj ; i 6= j) is a decreasing function of ti; i = 1; 2:
(b) Ti is stochastically decreasing in right tail with respect to V . That is

F (tijV > v; Tj > tj ; i 6= j) is a decreasing function of v:

The following result shows how the likelihood ratio ordering of V1 and V2 is
inherited by T1 and T2:

Theorem 3.3. Suppose V1 �LR V2: If f(tijv; Tj > tj) is RR2 (TP2) on [0;1)�
[0;1); then
Ti;v1 jTj > tj �LRTi;v2 jTj > tj :

The following result addresses the inheritence of failure rate orderings of V1
and V2 by T1 and T2:

Theorem 3.4. Suppose (a) V1 �FR V2 and
(b) �(i)(t1; t2jv1) � �(i)(t1; t2jv2); v1 < v2: Then
Ti;v1 jTj > tj � (�)FR Ti;v2 jTj > tj ; i; j = 1; 2; i 6= j:

The following theorem shows the corresponding result for the stochastic or-
derings.

Theorem 3.5. If V1 �st V2 and F (tijv; Tj > tj) is decreasing function of v; then
Ti;v2 jTj > tj �st Ti;v1 jTj > tj ; i; j = 1; 2; i 6= j:

4. MULTIPLICATIVE MODEL

We now consider the following model as a special case.

�(i)(t1; t2jv) = v�(i)0 (t1; t2); t1 > 0; t2 > 0; v > 0; (4.1)

where �(i)0 (t1; t2) is the baseline failure rate of the ith unit without taking the
frailty e¤ect and is independent of v:
We now present the following result:

Theorem 4.1. For the model (4.1)
(a) The ith component of the population level failure rate is given by

�(i)(t1; t2) = �0(t1; t2)EV (V jT1 > t1; T2 > t2): (4.2)

(b) H(vjT1 > t1; T2 > t2) is an increasing function of ti; i = 1; 2:
(c) EV (V jT1 > t1; T2 > t2) is decreasing in ti > 0; i = 1; 2: Moreover, if

�
(i)
0 (t1; t2) is decreasing in ti > 0; then �

(i)(t1; t2) is decreasing in ti > 0: That is
TijTj > tj ; i 6= j = 1; 2 is DFR:
(d) VjTi > ti2;Tj > tj �LRVjTi > ti1;Tj > tj ; for all ti1 < ti2; i 6= j = 1; 2:
(e) If V2 �LR V1; then V2jT1 > t1; T2 > t2 �LR V1jT1 > t1; T2 > t2:
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Theorem 4.2. Ti is stochastically decreasing in the right tail with respect to V;
given Tj > tj ; i = 1; 2: That is F (tijv; Tj > tj) is a decreasing function of v > 0:

Theorem 4.3. (a) If V1 �LR V2, then Ti;v1 jTj > tj �LR Ti;v2 jTj > tj ; i 6= j =
1; 2:
(b) If V1 �FR V2, then Ti;v1 jTj > tj �FR Ti;v2 jTj > tj ; i 6= j = 1; 2:
(c) If V1 �st V2, then Ti;v1 jTj > tj �st Ti;v2 jTj > tj ; i 6= j = 1; 2:

5. Shared Frailty Model

We now consider the following model, known as the shared frailty model

�(i)(t1; t2jv) = v�0i(ti); i = 1; 2; (5.1)

where �0i(ti) is the baseline failure rate of the ith unit, independent of the other
unit and of v:We now present the following result.

Theorem 5.1. For the above model
(a) The population level ith component failure rate function is

�(i)(t1; t2) = �0i(ti)EV (V jT1 > t1; T2 > t2):
(b) H(vjT1 > t1; T2 > t2) is an increasing function of ti; i = 1; 2:
(c) EV (V jT1 > t1; T2 > t2) is decreasing in ti > 0; i = 1; 2
Moreover, if �0i(ti) is decreasing in ti > 0; then �(i)(t1; t2) is decreasing in

ti > 0:
(d) VjTi > ti2; Tj > tj �LRVjTi > ti1; Tj > tj for all ti1 < ti2; i 6= j = 1; 2:
(e) If V2 �LR V1; then V2jT1 > t1; T2 > t2 �LR V1jT1 > t1; T2 > t2:

Theorem 5.2. Ti is (conditionally) stochastically decreasing in right tail with
respect to V; i = 1; 2:That is ; F (tijv) is decreasing function of v > 0; i = 1; 2:

Finally, we present the following result showing how the various stochastic
orders between the frailties translate into the stochastic orderings between the
failure times.

Theorem 5.3. (a) If V1 �LR V2; then Ti;v1 �LR Ti;v2 ; i = 1; 2
(b) IIf V1 �LR V2; then Ti;v1 �LR Ti;v2 ; i = 1; 2
(c) If V1 �st V2; then Ti;v1 �st Ti;v2 ; i = 1; 2

References
[1] Agresti, A., Ca¤o, B. and Ohman-Strickland, P. (2004). Examples in which

misspeci�cation of a random e¤ects distribution reduces e¢ ciency and pos-
sible remedies. Compuatational Statistics and Data Analysis, 47, 639-653.

[2] Clayton, D.G. (1978). A model for association in bivariate life tables and its
application in epidemiological studies of familial tendency in chronic disease
incidence. Biometrika, 65(1), 141-151.

[3] Clayton, D.G.and Cuzick, J. (1985). Multivariate applications of the propor-
tional hazard model. Journal of the Royal Statistical Society, Series A, 148,
82-108.

[4] Gupta, P.L. and Gupta, R.C.(1996). Ageing classes of Weibull mixtures.
Probability in the Engineering and Informational Sciences, 10, 591-600

5

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS019) p.4310



[5] Gupta, R.C. and Kirmani, S.N.U.A.(2006). Stochastic comparisons in frailty
models. Journal of Statistical Planning and Inference, 136, 3647-3658.

[6] Gupta, R.C. and Gupta, R.D. (2009).Journal of Statistical Planning and
Inference, 139, 3277-3287.

[7] Heckman, J.J. and Singer, B. (1984). The identi�bility of the proportional
hazard model. Rev.Econom. Stud. Li, 231-241

[8] Hougaard, P. (1984). Lifetable methods for hetrogeneous populations: distri-
butions describing the heterogeneity. Biometrika, 71, 75-83.

[9] Hougaard, P. (1991). Modeling hetereogeneity in survival data. Journal of
Applied Probability,

[10] Hougaard, P. (1995). Frailty models for survival data. Lifetime Data Analysis
, 1, 255-273.

[11] Vaupel, J.W.Manton, K.G. and Sttalard, E.(1979).The impact of heterogene-
ity in individual frailty on the dynamics of mortality. Demography 16(3),
439-454.

6

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS019) p.4311


