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1 Introduction

Dimension reduction in regression aims at improving poor convergence rates derived from the non-
parametric estimation of the regression function in large dimension. It attempts to provide methods
that challenge the curse of dimensionality by reducing the number of predictors. A specific dimen-
sion reduction framework, called the sufficient dimension reduction (SDR) has drawn attention in
the last few years. Let Y be a random variable and X a p-dimensional random vector. To reduce
the number of predictors, it is proposed to replace X = (X1, ..., Xp)T by a number smaller than p of
linear combination of the predictors. The new covariate vector has the form PX, where P can be
chosen as an orthogonal projection on a subspace E of Rp. Clearly, this kind of methods relies on an
alchemy between the dimension of E, which needs to be as small as possible, and the preservation
of the information carried by X about Y through the projection on E. In [5] and [2] a dimension
reduction subspace (DRS) is defined by the conditional independence property

(1) Y ⊥⊥ X | PcX,

where Pc is the orthogonal projection on a DRS. With words, it means that knowing PcX, there is no
more information carried by X about Y . It is possible to show that (1) is equivalent to

(2) P(Y ∈ A|X) = P(Y ∈ A|PcX),

for any measurable set A. Moreover under some additional condition (see [2]), the intersection of all
the DRS is itself a DRS. Consequently, there exists a unique DRS with minimal dimension and we
call it the central subspace (CS) [2]. In this article the CS is noted Ec and we assume its existence.

The present work deals with a part of the literature based on the principle of inverse regression;
i.e. instead of studdying the regression curve which implies high dimensional estimation problems, the
study is focused on the inverse regression curve E[X|Y = y] (order 1) or the inverse variance curve
var(X|Y = y) (order 2). Here we are only concerned with the order 1 moment based methods. These
methods include sliced inverse regression (SIR) [5], kernel inverse regression (KIR) [6], parametric
inverse regression (PIR) [1], and inverse regression estimator (IRE) [3]. For many different aspects
not detailed here, SIR is the indisputable leader of the previous enumerate and we refer to [3] for a
full background about inverse regression.

As quoted before, there exists a large range of methods aiming at the estimation of the CS.
By introducing the order 1 test function methodology (TF1), we try to propose a general point of
view about SDR. The original basic idea of TF1 is to investigate the dependence between X and Y
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by introducing nonlinear transformations of Y , and inferring about the CS through their covariances
with X. Hence, the CS is obtained by inspection of the range of E[Xψ(Y )], where ψ varies in a
well chosen family of functions. Methods deriving from TF1 provide an exhaustive estimation of the
CS under the same conditions than SIR. Moreover, an asymptotic variance analysis leads us to the
optimal transformation of Y for the estimation of the CS.

This article is organized as follows. In section 2, we introduce TF1 and the conditions for its
exhaustiveness. The choice of the optimal transformation of the response is detailed in section 3 in
which a plug-in method is proposed.

2 The test function methodology

To explain our next results in a simple way, we introduce the standardized covariate Z = Σ−
1
2 (X −

E[X]) with Σ = var(X). Hence we define the standardized central subspace equal to Σ
1
2Ec. Since

there is no ambiguity we always note it Ec. We denote by Pc the orthogonal projection on Ec and we
note dim(Ec) = d and Qc = I − Pc. For any matrix M , we note span(M) the space generated by the
columns of M .

2.1 Basic ideas

Model (1) implies that all the information detained by Z about Y is carried by PcZ. To find Ec, as
pointed out by [5] and explained in many articles on the subject, a natural idea is to focus on the
inverse regression curve E[Z|Y ]. Actually, if (1) holds, we can write the inverse regression curve as
E[E[Z|PcZ]|Y ]. If in addition, E[Z|PcZ] ∈ Ec, then E[Z|Y ] is with probability 1 a vector of Ec. The
previous idea is the cornerstone of many dimension reduction methods and TF1 is also based on it. SIR
consists in estimating the matrix MSIR = E[E[Z|Y ]E[Z|Y ]] which column space is included in the CS,
whereas TF1 general approach is interested in vector families of the kind E[Zψ1(Y )], ...,E[Zψq(Y )] for
some set of measurable functions ψk : R → R. We need an assumption frequently used in dimension
reduction, called the linearity condition.

Assumption 1. (lineariy condition)

E[QcZ|PcZ] = 0 a.s.

Theorem 1. Assume that Z satisfies Assumption 1 and has a finite first moment. Then, for every
measurable function ψ : R → R such that E[Zψ(Y )] <∞, we have

E[Zψ(Y )] ∈ Ec.

Proof. Thanks to the existence of the central subspace, E[Zψ(Y )] = E [E[Z|PcZ]ψ(Y )], and thanks to
the linearity condition, QcE[Zψ(Y )] = 0.

The previous theorem is not really new. Yet, it makes a simple link between TF1 and the CS
by providing a vector in Ec for every measurable function. Without additional assumption none of
the spaces generated by SIR and TF1 cover the entire CS.

2.2 Covering the central subspace

In this article, two kinds of conditions can be distinguished. Those that allow such a characterization
of the CS, and those that guarantee to cover the entire CS. As a consequence of Theorem 1, spaces
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generated by (E[Zψ1], ...,E[Zψq]) are included in Ec. Our goal is to obtain the converse inclusion.
Because TF1 is an extending of SIR, this one has a central place in the following argumentation. We
start by giving a necessary and sufficient condition for covering the entire CS with SIR. Then under
the same condition we extend SIR to a new class of methods.

Assumption 2. For every nonzero vectors η ∈ Ec, E[ηTZ|Y ] has a nonzero variance.

Lemma 1. If Z satisfies Assumption 1 and has a finite second moment, then Assumption 2 implies
that span(MSIR) = Ec and conversely.

Proof. Under the linearity condition, span(MSIR) = Ec is equivalent to ηTMSIR η > 0 for every
η ∈ Ec.

We now extend Lemma 1 to TF1. To state the following theorem, we introduce the function
space L1 (θ(y)µ(dy)) defined as

L1 (θ(y)µ(dy)) = {u : R → R;
∫

R
|u(y)|θ(y)µ(dy) < +∞},

where θ : R → R+ and µ a real measure.

Theorem 2. Assume that Z and Y satisfy Assumptions 1 and 2. Assume also that Z has a finite
second moment. If Ψ is a total countable family in the space L1(E[‖Z‖|Y = y]PY (dy)), then we can
extract a finite subset ΨH of Ψ such that span (E[Zψ(Y )], ψ ∈ ΨH) = Ec.

Proof. Lemma 1 provides that {E[ZE[Zk|Y ]], k = 1, ..., p} is a generator of Ec. First, let us show
that any vector of this family can be approximated by E[Zφ(Y )], where φ is a linear combination of
functions in Ψ. Let ε > 0 and k ∈ {1, ..., p}. Since Ψ is a total family in L1(E[‖Z‖|Y = y]PY (dy)),
there exists φk a finite linear combination of functions in Ψ such that,

E [E[‖Z‖|Y ] |φk(Y )− E[Zk|Y ]|] ≤ ε,

besides, we have

‖E[Zφk(Y )]− E[ZE[Zk|Y ]]‖ = ‖ E [E[Z|Y ] (φk(Y )− E[Zk|Y ])]‖
≤ E [E[‖Z‖ |Y ] |φk(Y )− E[Zk|Y ]| ] ,

and therefore,

(3) ‖E[Zφk(Y )]− E[ZE[Zk|Y ]]‖ ≤ ε.

Here an important point is that E[Zφk(Y )] ∈ Ec, it implies that

(4) Span (E[Zφk(Y )], k = 1, ..., p) ⊂ span(MSIR),

Moreover, (3) and the continuity of the determinant involve that the rank of the set of vectors
E[Zφk(Y )] is equal to d if ε is small enough. Then, instead of an inclusion (4) become an equal-
ity and we complete the proof by recalling that each φk is a linear combination of a finite number of
functions in Ψ.

Theorem 2 assumes that the family is total. Some mild conditions can be found in [4]. Let us
recall their main result.

Theorem. (Y. Coudène) Let p ∈ [0,∞[, µ a borelian probability measure on [0, 1], and fn : [0, 1] → R
a family of bounded measurable functions that separates the points:

∀x, y ∈ [0, 1], x 6= y, ∃n ∈ N such that fn(x) 6= fn(y).

Then the algebra spanned by the functions fn and the constants is dense in Lp([0, 1], µ).
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Accordingly, we can apply Theorem 2 with any family of functions that separates the points,
for example polynomials, complex exponentials or indicator functions. To make possible a simple
use of this theorem we need to recall this result. If u = (u1, ..., uH) is a Rp vector family, then
span(uuT ) = span(u). Thus, if we denote by ψ1, ..., ψH some elements of a family that separates the
points, then the CS can be obtained by making an eigendecomposition of the order 1 test function
matrix associated to the functions ψ1, ..., ψH defined as

MTF1 =
H∑

h=1

E[Zψh(Y )]E[Zψh(Y )]T .

Especially, the eigenvectors associated to a nonzero eigenvalue of any order 1 test function matrix
span the central subspace.

3 Choice of the test function for asymptotic optimality

Theorem 2 implies that the subspace Ec can be covered in totality by the family of vectors {E[Z1{Y ∈I(h)}], h =
1, ...,H}. Actually, it is possible to extract d orthogonal vectors living in the space spanned by this
family, and then it provides us a basis of the central subspace. This procedure is realized by SIR.
Nevertheless, the issue here is somewhat more complicated, we want to find d orthogonal vectors that
have the minimal asymptotic mean squared error for the estimation of the projection Pc. We define

(5) MSE = E
[
‖Pc − P̂n‖2

]
,

where ‖ · ‖ stands for the Frobenius norm and P̂n is derived from the family of vectors η̂ = (η̂1, ..., η̂d)
defined as

η̂k =
1
n

n∑
i=1

Ziψk(Yi) with ψk(Y ) = (1{Y ∈I(1)}, ...,1{Y ∈I(H)})αk = 1T
Y αk,

where αk ∈ RH . Besides, we introduce η = (η1, ..., ηd) with ηk = E[Zψk(Y )]. Consequently, we aim
at minimizing the MSE according to the family (ψk)1≤k≤d, or equivalently according to the matrix
α = (α1, ..., αd) ∈ RH×d. Moreover, since we have

MSE = E[tr(P − P̂n)2]

= d+ E[d̂− 2tr((I −Qc)P̂n)]

= E[d− d̂] + 2E[tr(QcP̂n)],(6)

and we suppose that d is known, the minimization of MSE results only on the minimization of the
second term in the previous equality. Hence, this naturally leads us to the minimization problem

min
α

lim
n→∞

nE[tr(QcP̂n)],

under the constraint of orthogonality of the family (ηk)1≤k≤d. For a more comprehensive approach, we
choose to minimize the expectation of the limit in distribution, instead of the limit of the expectation
when n goes to infinity, of the sequence ntr(QcP̂n). To set out clearly the next proposition, let us
introduce some notations. Define the matrices

C = (C1, ..., CH) with Ch = E[Z1{Y ∈I(h)}],

D = diagdh with dh =
(
E
[
‖QcZ‖21{Y ∈I(h)}

])
,
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and

G = D− 1
2CTCD− 1

2 .

The matrix G is the Gram matrix of the vector family (Ch/
√
dh)1≤h≤H , Theorem 2 ensure that its

rank is equal to d. Besides, G is diagonalisable and so we define P = (P1P2) ∈ Rp×(d+(p−d)) such that

P TGP =

(
D0 0
0 0

)
,

where D0 ∈ Rd×d.

Proposition 1. The random variable ntr(QPn) has a limit in law Wα as n→∞. The minimization
problem

(7) min
α

E [Wα] u.c. ηT η = Id,

has a unique solution, up to orthogonal transformations, given by α = D− 1
2P1D

− 1
2

0 .

Proof. We first calculate the expectation of the limit in law of the sequence ntr(QP̂n) and then we
solve the optimization problem. Since

ntr(QP̂n) = ntr(η̂TQη̂ (η̂T η̂)−1)

= tr(
√
n(η̂T − ηT )Q

√
n(η̂ − η)(η̂T η̂)−1),

Slutsky’s theorem and the continuity of the operator tr(·) provides that ntr(QP̂n) converges to
tr(δTQδ) in distribution, where δ ∈ Rp×d is the limit in law of the sequence

√
n(η̂ − η), i.e. a

normal vector with mean 0. Thus it remains to calculate the expectation of this limit, notice that

E [Wα] = E
[
tr(δTQδ)

]
=

d∑
k=1

tr
(
QE[δkδT

k ]
)
,

where δk stands for the limit in law of the sequence
√
n(η̂k − ηk). Finally, since its variance is equal

to var(Zψk(Y )) and using the linearity condition, we have

(8) E [Wα] =
d∑

k=1

E
[
‖QZ‖2ψk(Y )2

]
.

Now let us reformulate the minimization problem in terms of matrix α. First, from (8) and
using that the I(h) are pairwise disjoint, we have

(9) E [Wα] =
d∑

k=1

αT
k E[‖QcZ‖21Y 1

T
Y ]αk = tr(αTDα),

and also,

(10) ηT η = αTCTCα = (D
1
2α)TGD

1
2α.

From (9) and (10) we set out the equivalent minimization problem

min
α

tr
(
αTDα

)
u.c. (D

1
2α)TGD

1
2α = Id,

then, from the variable change U = P TD
1
2α we derive

min
U

tr(UTU) u.c. UT

(
D0 0
0 0

)
U = Id.
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By writing UT = (UT
1 , U

T
2 ) we notice that there is no constraint on U2, which implies that U2 = 0.

Consequently, it remains to solve

(11) min
U1

tr(U1U
T
1 ) u.c. U1U

T
1 = D0,

where U1 ∈ Rd×d. Clearly, in (11) the quantity to minimize is fixed by the constraint. Then, a solution

of it is given by U1 = D
− 1

2
0 H where H is any orthogonal matrix. Hence, the solution of (7) is

(12) α = D− 1
2PU = D− 1

2P1D
− 1

2
0 H

where H is any orthogonal matrix.

Proposition 1 provides the expression of the optimal functions ψ1, ..., ψd. It is easy to show that
their associated vectors η = (η1, ..., ηd) are such that

MTF1η = ηD0,

where MTF1 =
∑H

h=1
ChCT

h
dh

. Hence we propose to follow this algorithm :

0. Standardization of X into Z. Initialize Q̂c = I.

1. Compute

d̂h =
1
n

n∑
i=1

‖Q̂cZi‖21{Yi∈I(h)}, Ĉh =
1
n

n∑
i=1

Zi1{Yi∈I(h)} and M̂TF1 =
H∑

h=1

ĈhĈ
T
h

d̂h

.

2. Extract η̂ = (η̂1, ..., η̂d): the d eigenvectors of M̂TF1 with largest eigenvalues.

3. Q̂c = I − η̂η̂T .

Steps 1 to 3 are repeated until convergence is achieved and then η̂ is the estimated basis of Ec derived
from TF1. Simulations comparing TF1 to SIR will be presented at the oral presentation.
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