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1 Introduction 

For a single hypotheses problem, the maximal tolerable type I error rate ( or called significance level ) is 
chosen by experimenters in early planning stage. It is often suggested using the multiple comparison 
procedures (MCP) to control the type I error rate- so called familywise error rate (FWER) in literature, where 
FWER is the probability of rejecting at least one true null hypothesis in the given family of the hypothesis 
tests. When many statistical tests are simultaneously conducted, the chance of any false positive finding or 
FWER inflates as the number of hypotheses. Hochberg & Tamhane (1987) proposed that the problem of 
using MCP is too conservative, such that it often substantially reduces the power to detect a difference when 
the number of testing hypotheses is large. Benjamini & Hochberg (1995) introduced a multiple hypothesis 
testing error measure, called the false discovery rate (FDR). This quantity is the expected proportion of false 
positive findings among all the rejected hypotheses. Hereafter, Benjamini & Liu (1999) proposed sequential 
procedures to control the FDR. Benjamini & Hochberg (2000) proposed that lack of multiplicity control is 
too permissive and the protection resulting from controlling the FWER is too restrictive. Many papers have 
focused on FDR under independence or dependence assumption of test statistics (Storey, 2007; Friguet et al., 
2009). 

No matter to improve the statistical power of a MCP or have more precise results in FDR estimation, 
the estimation of the number of true null hypotheses, 0m , is important. There are some literatures about 
estimating 0m , e.g., Schweder and Spjψtvoll (1982), Storey (2002), Benjamini and Hochberg (2000), Hsueh, 
Chen and Kodell (2003). In section 2, five estimation methods are reviewed. In section 3, a nonparametric 
approach based on the McNemar test is presented. Furthermore, the statistical properties are also explored. In 
section 4, simulations studies are conducted. The means, standard deviations, and mean square errors of the 
estimates are used to express the behavior of different methods in simulation. All estimation methods are 
compared. Discussion and final remarks are provided in section 5. 
 
2 Literature Review 

The problem of simultaneously testing m  null hypotheses 0 ( 1,2,..., )iH i m  is considered. Let 

0m  be the number of true null hypotheses and R  be the number of significances declared. The mentioned 
symbols are summarized in Table 1. In Table1 except that m  and R  have already known, U , V , S  
and T  are all unknown, and random variable R  will increase as the significance level   increases. 
Hereafter, the capitalization of every symbol will be used to represent the random variable and small letter 
represent observed value. 
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Table 1 The result and probability of occurrence in testing m  hypotheses. 

 
Declared 
Non-Significant 

Declared  
Significant 

Total 

Null True S (1 )  V ( )  0m  
Alternative True T ( )  U (1 )  0m m  

Total Rm   R  m  

 
Suppose that 0iH  is rejected when a test statistic iZ  is large. Let iF  be the cumulative distribution 

function of iZ  under 0iH . The p-value, i.e. significance probability, for the hypothesis 0iH  
is 1 ( )i i ip F z  , with possible correction if the distribution is discrete (Cox, 1977). The distribution of iZ  
is assumed completely known when 0iH  is true, so that ip  does not depend upon unknown parameters. 
The following procedure will be based upon the observed significance probabilities 1,..., mp p . If 0iH  is 
true, the significance probability ip  is uniformly distributed on the interval (0,1). If 0iH  is not true, ip  
will tend to have small values. 

Suppose that the corresponding p-value of the true null hypotheses 0iH  is ip , let 

(1) (2) ( )mp p p    be the ordered statistic of 1p , 2p ,…, mp , and (0 )iH  is the corresponding null 
hypotheses of ( )ip , hence FWER and FDR can be expressed as follows: 

FWER=P(reject at least one null hypothesis | 0iH  is true, 1,...,i m )=P( V 1 ), 

FDR=
0

1

 I(  is true) R E(V) R
m

i i
i

P H


 , 

The properties of FWER, FDR had stated by Benjamini and Hochberg (2000). About the estimation of 

0m , the methods in literature are stated as follows. 

(1) Schweder and Spjψtvoll’s Method 
For a relatively small  , the expected number of nonsignificant hypotheses can be approximated as 
          0( ) E(( ) ) (1 )m r m R m       ,                           (1) 

where ( )r   is the observed number of rejections at level  . The number of rejections at the level  ip  is 
exactly i , that is,  ( )ir p i . Schweder and Spjψtvoll (1982) considered the cumulative plot of observed 

 1 ip  against m i , 1,...,i m . The procedure starts from mi   and decreases one in each successive 
calculation. Because Hsueh, Chen and Kodell (2003) proposed that the method of Schweder and Spjψtvoll 
(1982) has the worst performance, so this method is not considered in the simulation.  

(2) Storey’s Method (ST) 
Storey (2002) proposed     

0
ˆ 1STm m r     to estimate the slope directly based on Equation (1) 

where   ideally is the change point of the -valuesp  between true null and true alternative hypotheses. A 

bootstrapping procedure was suggested for the optimal   in his paper. 0.5   suggested by Hsueh et al. 

(2003) will be used in empirical evaluation of the Storey (ST) method. 

(3) Benjamini and Hochberg’s Lowest Slope Method (LSL) 
Benjamini and Hochberg (2000) proposed the ordinary least squares estimator of the slope of the line 

restricted to pass through the point ( 1,1)m  , and the Lowest Slope (LSL) estimator  (1 ) ( 1 )ip m i    
which is the slope of the line passing through the points ( 1,1)m   and  ( , )ii p . The LSL method is given 
as: (a) Calculate ( )(1 ) ( 1 )i iS p m i    , the -thi  slope estimate. (b) Starting with 1i  , proceed 
towards larger i  as long as 1i iS S  . (c) Stop when the first time 1j jS S  , and obtain the estimate. 

                      0ˆ [(1 1), ]jm min S m  ,                                (2) 

(4) Mean of Differences Method (MD) 

As mentioned in Benjamini and Hochberg (2000), Hsueh, Chen and Kodell (2003) proposed the LSL 
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estimator can be derived in view of the difference ( ) ( ) ( 1)i i id p p   , 0 2,..., 1i m m m    , (0) 0p  , 

( 1) 1mp   . The differences ( ) 'd i s  are identically 0Beta(1, )m  distributed and have the common mean 

0( ) 1 ( 1)E D m  . Thus, 0m can be estimated as 

                    
00ˆ 1 1 1 ( ) 1MD

mm d E D    ,                            (3) 

where 
0 00

1

0 ( 1) 02
{1 }

m

m i m mi m m
d d m p m



   
   .  

To have a conservative estimate, replacing 0m  with m  in 
0md  is required and the search starts from 

j m  with md  and j  proceeds downward. The search stops and 0ˆ MDm ( )
0ˆ MD jm  when the first time 

( 1)
0ˆ MD jm  ( )

0ˆ MD jm .  

(5) Least Squares Method (LS) 

An alternative least squares (LS) estimation is described by Hsueh, Chen and Kodell (2003). At a given 

significance level  , the probability of rejection of the thi  null hypothesis is {1 ( , )}i   , where i  

is the true mean under the ith alternative hypothesis. The expected number of declared significances is 

0

0

0 0
1 1

E{ ( )} {1 ( , )} {1 ( , )} ( ) ( )
m m

i i
i i m

R m m m         
  

        , 

where 
0

0
1

( ) {1 ( , )} ( )
m

i
i m

m m    
 

    is the average power among the 0( )m m  nontrue null 

hypotheses tested at the   level. Given (1) ( ),..., mp p , and ( )( )ip , the expected number of rejected 

hypotheses at significance level ( )ip  is 0 ( ) 0 ( )E( ) ( ) ( )i ii m p m m p   . Thus, an estimate of 0m  can be 

obtained by minimizing the sum of squares 2
0 ( ) 0 ( )

1

( ( ) ( ))
m

i i
i

i m p m m p


   , and is given as 

                          2
0

1 1

ˆ
m m

LS
i i i

i i

m x y x
 

  ,                            (4) 

where ( )( )i iy i m p   and ( ) ( )( )i i ix p p  .  

  

3 Proposed Statistical Procedure  

3.1 Proposed Method 

The McNemar test is used to obtain the estimate of 0m  by replacing V  and T  in Table 1 by 0m  

and 0 0( R )m m m    respective. Therefore, the McNemar test can be shown as 
2

2 (V T)

V T
Z






2
0 0 0

0 0 0

[ ( R )]

( R )

m m m m

m m m m

 
 

   


   

2
0

0 0

( R)

R 2

m m

m m m
 


  

 

where 
1

R ( )
m

i
i

I p 


  . Let 2
,1

2
Z , where 2

,1  is the  th100 upper percentile of chi-square 

distribution with 1 degree of freedom, the equation will be obtained below. When the equality holds, we have 

                        
0

2 2 2 2 2
1, 1, 0 1,[2( R) 2 ] ( R) ( R) 0m m m m m              . 

The 0m can be estimated by solving the equation, hence BmMC A ˆ 0 . Where 
2
,1)5.0()(   RmA  and )(2)5.0()( 2

,1
222

,1 RmB    . 

Here the part of plus sign and minus sign will be denoted by 
0

( )ˆ MCm   and 
0

( )ˆ MCm  . To avoid mmMC 0ˆ   

or 0ˆ 0 MCm . Hence, the 
0

( )ˆ MCm   and 
0

( )ˆ MCm   can be adjusted as 

} ,Amin{ˆ )(
0 mBmMC                              (5) 

and                   }A ,0max{ˆ )(
0 BmMC                                (6) 
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The method of MCC is that the estimator 
0

ˆ MCAm =A is used. 

3.2 Applying 0m̂  to Multiple Testing Procedure 

The power of Bonferroni-type multiple testing procedures can be improved by the estimates of 0m . If 

all hypotheses are independent, then testing each individual hypothesis at level   will have the FWER   
0

0(V 1) 1 (V 0) 1 (1 )mPr Pr          . Hence, under the Bonferroni-type multiple testing 

procedures each individual test will be required to be rejected at the level 01/
01 (1 ) m     for a FWER-

controlling test set at the level 0 . On the contrary, if all test statistics are dependent, then testing each 

individual hypothesis at the level 0 0m  and that will have FWER< 0 , proposed by Hsueh et al. (2003). 

 

4 Simulation Studies  

In this section, a simulation study was conducted to compare the performance of the number of true null 

hypotheses among seven different methods. Fortran 90 and IMSL’s STAT/LIBRARY Fortran subroutines 

were used in the simulation study. In order to compare the behaviors of different method, the simulated data 

is generated using the simulated method proposed Hsueh et al. (2003). 

4.1 Simulation procedure 

(A) Independent model 

The data is generated from the problem in terms of testing m  univariate means of an -variatem  

normal random vector, 1: 0  .   : 0oi i i iH vs H   , 1,...,i m . The detail of the simulation process 

will be described below. 

1. The univariate normal random variables are independent and each has variance 1. The 0m  true null 

  variables were generated from a 0 -variatem  normal random vector with zero mean vector. 

2. The nontrue variables, a nonzero effect size, , is added to each random variate. Two alternative models 

 were considered for the effect sizes: (a) a simple alternative model, in which the effect size is constant 

0   (b) a multiplicity alternative model, in which the effective size   is generated from a truncated 

normal distribution 0( ,1) { 0}C N I    with some normalizing constant 0C  . 

3. The parameter 0  has two cases 0 2   and 0  have 80% power, 

 1 1
0 0 01 ( , ) 1 ( (1 2) ) ( ( 2) )                 1

01 ( (1 2) )      . The 

individual   was set to ensure FWER=0.25 under independent model. That is, 0/1)25.01(1 m . 

4. A constraint 0m̂ m  is given in solving each estimate. The simulation trials are repeated 10,000 times 

and the sample means, standard deviations (SD) and the root mean square error (RMSE) of the number of 

true hypotheses under independent models at the nominal significance level of   for these methods were 

calculated. 

(B) Equicorrelated model 

Similar steps are conducted for equicorrelated model, only the generated data in step 1 is different from 

independent model in simulation study. The pairwise correlations of the normal random variables for the true 

hypotheses are 0.2 , the same as the pairwise correlations for the nontrue hypotheses. The correlations 

between the true variables and the nontrue variables are set to be zero in equicorrelated model. 

4.2 Simulation Results 

m  1000, 500; mmm  and 9.00   are chosen for comparisons of seven methods. The parameter 0  
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is set to be 0 2  and have 80% power. There are 4 combinations for different 0  and model. For saving 

space, only the simulated results of m  1000 and 0 2  are showed. Table 2 is based on the simple 

alternative model and multiplicity alternative model. The method of MCC(+) is the estimator 
0

( )ˆ MCm  and the 

method of MCC(-) is the estimator 
0

( )ˆ MCm  . In LS method, in order to avoid the mistake of 0m unknown, so 

0ˆ MDm  is suggested to instead of 0m . Generally speaking, the MCC(+), MCC(-) and the MCC estimators 

have the most desired performance, least bias and variation and RMSE as 0m m . The LSL, MD and LS 

have smaller RMSE than the proposed method and ST has larger RMSE than LSL, MD and LS as mm  0  . 

For saving space, the simulated results of empirical FWERs are summarized below. The empirical FWERs of 

LS method often exceed the nominal level as 0m m . On the other hand, the proposed methods always 

well control the FWER. Generally speaking, the proposed methods perform well, and the difference between 

simple and multiplicity alternative is small. 

 

5 Conclusion  

The FWER approaches have been proposed to control an error rate in multiple hypothesis testing. Here 

seven methods are used to evaluate the number of true null hypotheses in two-sided test, and consider if they 

properly control the FWER. These different methods have the similar results for simple alternative and 

multiple alternatives. The MCC(+), MCC(-) and MCC have least bias, variation and root mean square error 

as 0m m , and perform well to control the FWER among the seven methods considered. The proposed 

estimation has the advantage of directly computing. It is not like the other estimation methods that need to 

compute iteratively. Besides, MCC(-) and MCC(+) can be regarded as the confidence lower limit and upper 

limit of the number of true null hypotheses. Hence, the large sample properties may further be researched in 

the future. 
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Table 2 Comparisons of various estimations for 0m , the number of true null hypotheses 

 in two-sided test. The parameter 0 2  . FWER=0.25 

  Simple alternative model 

  Independent Equicorrelated 

m  0m  Method Mean SD RMSE FWER Mean SD RMSE FWER

ST 987.46 18.05 21.98 0.247 952.28 129.02 140.52   0.220

LSL 999.84 0.63 0.65 0.250 994.56 48.47 48.97   0.246

MD 998.79 1.34 1.80 0.249 994.42 37.89 38.39 0.246

LS 997.07 5.19 6.08 0.249 987.50 42.59 44.89   0.237

MCC(+) 967.39 6.95 33.33 0.242 961.66 39.61 55.25   0.237

MCC(-) 929.11 6.81 71.14 0.234 928.95 42.00 82.45   0.232

1000 

MCC 948.34 6.88 52.16 0.238 945.38 40.35 67.92   0.234

ST 917.68 29.87 34.71 0.249 891.88 129.57 130.65 0.235

LSL 978.46 8.01 78.87 0.251 949.30 55.04 76.91   0.248

MD 976.05 8.07 76.48 0.251 952.63 44.42 70.38   0.247

LS 971.99 7.86 72.48 0.262 954.62 45.83 72.54   0.266

MCC(+) 920.39 8.32 21.98 0.243 903.82 44.59 47.30   0.242

MCC(-) 883.05 8.15 18.77 0.234 867.24 44.15 56.98 0.232

1000 

900 

MCC 901.79 8.24 8.41 0.238 885.61 44.33 49.03   0.237

  Multiplicity alternative model 

  Independent Equicorrelated 

m  0m  Method Mean SD RMSE FWER Mean SD RMSE FWER 

ST 945.26 140.84 153.62 0.247 942.24 145.76 158.90   0.220 

LSL 993.51 53.09 53.64 0.250 993.06 54.96 55.52   0.246 

MD 984.59 48.82 51.68 0.249 987.35 47.08 49.15 0.246 

LS 985.67 46.47 49.10 0.249 984.84 48.06 50.79   0.237 

MCC(+) 960.58 43.26 58.66 0.242 960.11 44.75 60.06   0.237 

MCC(-) 928.99 45.91 84.53 0.234 929.01 47.48 85.41   0.232 

1000 

MCC 944.86 44.09 70.65 0.238 944.64 45.60 71.79   0.234 

ST 886.37 143.27 144.68 0.250 883.58 148.08 149.59   0.235 

LSL 934.29 58.26 70.42 0.250 927.28 58.92 67.20   0.248 

MD 944.70 52.61 70.33 0.250 940.35 51.24 66.26 0.246 

LS 945.98 50.07 69.19 0.261 941.68 51.59 67.29   0.264 

MCC(+) 894.08 47.01 49.26 0.243 889.97 47.68 50.13   0.242 

MCC(-) 850.85 7.00 49.65 0.234 845.72 38.51 66.65   0.232 

1000 

900 

MCC 876.00 46.66 54.19 0.238 871.92 47.29 56.29   0.237 
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