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1 Introduction

The Mediamat panel of Médiamétrie is the device used to collect the measurements of the television
(Media) audiences in France. The Mediamat panel was installed in 1989 and composed of 2300 French
representative households. Over the years, the panel has been enriched in two aspects: the sample size
and the qualification criteria. Today the panel consists of 4200 households for which a large number
of variables (socio-demographic, geographic) with known totals is available. At the time being, this
information is partially used: the quota and the calibration variables are only used. On the same
hand, French media landscape/scenario has changed significantly over the past years. In 1989, the
majority of the households did not receive more than 6 channels, but it is not the case today due
to the development in the paid digital offers (cable, satellite and ADSL) and the appearance of the
TNT. The combination of these facts motivates us today to review the list of criteria used until now
to structure the panel. In this paper, we aim at extending the actual estimation calibration methods
for allowing to incorporate large auxiliary data sets in order to improve efficiency. We suggest a new
class of estimators based on principal component analysis which reduces the dimension while keeping
the maximum of information. This approach is even more motivated by the fact that the auxiliary
information will be very soon enriched by the development of the digital television channels with ”re-
turn way” (the ”return ways” allow to cable and satellite operators to have an exhaustive measure of
the number of alight meters).

2 Model-assisted and calibration estimators for finite population

totals

We consider the population U = {1, . . . , i, . . . , N} and the sample s ∈ S selected from U according to
a sampling plan p(s). Let πi = Pr(i ∈ s) and πij = Pr(i, j ∈ s), i 6= j be the probabilities of inclusion
of first and second degree respectively. Let Y be the variable of interest and yi be the value of Y for

Int. Statistical Inst.:  Proc. 58th World Statistical Congress, 2011, Dublin (Session CPS002) p.3847



the i-th individual. Let X1, . . . ,Xp be the auxiliary variables. We denote by xi = (X1i, . . . , Xpi)′ the
values of the auxiliary variables for the i-th individual and let X = (X1, . . . ,Xp) be the N × p matrix
having the vectors x′i for all i ∈ U as rows.
We want to estimate the total of Y over the whole population U,

ty =
∑
U

yi

by taking into account the auxiliary information. For this, we introduce the superpoplatoin model ξ,

ξ : y = Xβ + ε(1)

and we use the model-assisted-approach (Särndal et al., 1992). The regression coefficient β is estimated
under the model ξ by ordinary least square method (OLS) and we obtain

β̂OLS = (X′X)−1X′y(2)

provided that X′X is a full-rank matrix. An estimator of β̂OLS based on the sampling design is
β̂OLS,π = (X′sΠs

−1Xs)−1X′sΠs
−1ys where Xs, respectively ys, is the restriction of X, respectively of

y, on the sample s and Π−1
s = diag( 1

πi
)i∈s. The GREG estimator for the total ty is given by,

t̂GREG = t̂y,π −
(
t̂x,π − tx

)′
β̂OLS,π =

∑
s

wiyi(3)

where t̂y,π =
∑
i∈s

yi
πi
, respectively t̂x,π =

∑
i∈s

xi
πi
, is the Horvitz-Thompson (HT) estimator of ty, respec-

tively of tx =
∑

U xi. The GREG estimator is a weighted estimator with weights not depending on
the study variable,

ws = (wi)i∈s = ds −Πs
−1Xs(X′sΠs

−1Xs)−1(d′sXs − 1′UX)(4)

where ds = (di)i∈s with di = 1/πi is the sampling weight vector and 1′U is the N -dimensional vector
of ones.

An alternative approach is the calibration approach. This method proposed by Deville and Särndal
(1992) consists in calculating the calibration weights wcal

s = (wcali )i∈s such that they are as close as
possible to the sampling weights ds and subject to the constraints of calibration on the auxiliary
variables. For the chi-square distance, we obtain the wcal

s as solution of the following optimization
problem

wcal
s = argminw

∑
s

(wi − di)2

diqi
et w′cals Xs = 1′UX

where qi is a constant used to control the variability of the observations. In most of applications,
qi = 1 and in this situation the weights wcal

s are similar to the ws given by relation (4).
It is well-known that the GREG or the calibration estimator improve the Horvitz-Thompson estimator
if the relation between the variable of interest and the auxiliary information is well-explained by the
model ξ. Nevertheless, this estimator is not robust if the X matrix is ill-conditioned or if there exists a
nearly linear relation between the columns of X (multicollinearity). This can happen if a large number
of explanatory variables are used or if the variables contain many zeros. In these cases, the estimation
of β given by (2) is very instable and the weights wcal

s or ws may be negative or very large. From a
calibration point of view, this results when a very large number of calibration equations is used.

Ridge Regression in Survey Sampling
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In order to circumvent this problem, Bardsley and Chambers (1984) in a model-based setting and Rao
and Singh (2009) in a model-assisted setting have proposed a class of penalized estimators. The Rao
and Singh’s estimator is obtained as a solution of the following minimization problem

wc = argminw(w − ds)′Π̃s(w − d) + (w′Xs − 1′UX)D(w′Xs − 1′UX)′

where Π̃s = diag(qk)−1
k∈sΠs and D is a positive diagonal cost matrix. In a model-based setting, the

matrix Π̃s is replaced by the variance-covariance matrix of errors (εi)i∈s (Bardsley and Chambers,
1984). In this way, we penalize the large values of

∑
sw

c
ix
′
i −
∑

U x′i and we eliminate the possibility
of having very large or negative weights. This approach is equivalent to construct a GREG estimator
given in (4) with the regression coefficient estimated by a ridge estimator (Hoerl and Kennard, 1970).
More precisely, this consists in adding a positive diagonal cost matrix to the diagonal of the matrix
X′sΠ

−1
s Xs, β̂MA,R =

(
X′sΠ

−1
s Xs + D−1

)−1 X′sΠ
−1
s ys. The ridge estimator of β is ξ-biased but is more

stable in presence of multicollinearity.

3 Principal Components Regression in Survey Sampling

3.1 Model-assisted approach

We suppose without loss of generality that the auxiliary variables are standardized, namely 1′UXj = 0
and X′jXj = 1 for all j = 1, . . . , p and 1′U is the N -dimensional vector of ones.
We suggest a new class of GREG type estimators using principal component regression (PCR) (Jolliffe,
2002). The PCR consists in reducing the space spanned by the columns of X and consider the
regression model ξ′ over the reduced space. We consider the eigenvectors v1, . . . ,vr corresponding to
the largest eigenvalues λ1 ≥ . . . ≥ λr > 0 of the matrix X′X. Let zj = Xvj = (zji)i∈U for j = 1, . . . , r
be the first r principal components and Zr = (z1, . . . , zr). The new model consists in regressing y on
Zr

ξ′ : y = Zrη + εr(5)

The estimation of η is done by least squares, η̂ = (Z′rZr)
−1Z′ry and the estimator of β is given

by β̂PC = (v1, . . . ,vr)′η̂. This estimator is ξ-biased but its ξ-mean squared error (MSE) is smaller
than that of β̂OLS . Jolliffe (2002) provides criteria for choosing the number of principal components.
Let z̃′i = (z1i, . . . , zri) be the vector containing the values of the r principal components for the i-th
individual and Zr = (z̃′i)

N
i=1.

The estimator η̂ can not be calculated since it contains the unknown population vector y. The design-
based estimator of η̂ is given by η̂π = (Z′r,sΠ

−1
s Zr,s)−1Z′r,sΠ

−1
s ys where Zr,s is the restriction of Zr

on the sample s, namely Zr,s = (z̃′i)i∈s. We suggest to estimate the total ty by

t̂PC = t̂y,π −
(
t̂z,π − tz

)′
η̂π(6)

where t̂z,π =
∑
s

z̃i
πi

is the Horvitz-Thompson estimator of tz =
∑

U z̃i. For standardized variables Xj ,

j = 1, . . . , p we have that the principal components are of zero mean and this fact implies that tz = 0.
As a consequence, the estimator given by (6) becomes

t̂PC = t̂y,π − t̂′z,πη̂π =
∑
s

yi − z̃′iη̂π
πi

(7)
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which is the Horvitz-Thompson estimator for the sample fit residuals yi − z̃′iη̂π. We can remark
that t̂PC is a GREG type estimator for the vector of the first r principal components Zr of X.
By its construction we achieve a reduction in dimension of X by retaining maximum information.
Nevertheless, this method demands knowing X over the whole population in order to derive the
eigenvalues and eigenvectors.

Result 1 We suppose that η̂π − η̂ = op(1). The asymptotic variance of t̂PC is the variance of t̂diff =
t̂y,π −

(
t̂z,π − tz

)′
η̂ = t̂y,π − t̂′z,πη̂,

AV (t̂PC) =
∑
U

∑
U

(πij − πiπj)
yi − z̃′iη̂

πi

yj − z̃′jη̂
πj

3.2 Calibration with Principal Components

An estimator using the calibration approach can be given. The vector of auxiliary information is
now composed of the first r principal components z1, . . . , zr. More exactly, we construct the estimator
t̂w =

∑
sw

c
iyi calibrated on the finite totals of the principal components zj , j = 1 . . . , r instead of Xj ,

j = 1, . . . , p variables. So, the weights wc = (wci )i∈s satisfy

wc = argminw

∑
s

(wi − di)2

diqi
and w′cZr,s = 1′UZr(8)

The calibration weights obtained in this way will not allow to find exact totals of the initial auxiliary
variables. This property is verified in the projection space on Zr.

Calibration on second moment of the principal component variables

An interesting extension of the classical calibration approach can be obtained noting that the principal
components variables have the following property:

z′jzj =
∑
i∈U

z2
ji = λj , for all j = 1, . . . , p

This means that we can add a supplementary calibration equation on the second moment of the
principal components. Consider Z2

r = (z2
1, . . . , z

2
r) with z2

j = (z2
ji)i∈U . We want to find the calibration

weights wc that satisfy the following optimization problem

wc = argminw

∑
s

(wi − di)2

diqi
and

w′cZr,s = 1′UZr, w′cZ2
r,s = 1′UZ2

r

where Z2
r,s is the sample restriction of Z2

r . The solution is given by

wc = ds − Π̃−1
s Tr,s

(
T′r,sΠ̃

−1
s Tr,s

)−1 (
d′sTr,s − 1′UTr

)
where Π̃s = diag(qk)−1

k∈sΠs and the n×2r matrix Tr,s = (Zr,s,Z2
r,s). The calibration estimator for the

total ty is in fact a generalized regression estimator for the N × (2r)-dimensional auxiliary information
Tr = (Zr,Z2

r) as follows
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t̂cPC = wc′ys = d′sys −
(
d′sTr,s − 1′UTr

) (
T′r,sΠ̃

−1
s Tr,s

)−1
T′r,sΠ̃

−1
s ys(9)

= t̂y,π −

(∑
s

ti
πi
−
∑
U

ti

)′
B̂z,z2

where ti = (z̃′i, z̃
2
i
′) is the i-th row of Tr and B̂z,z2 =

(
T′r,sΠ̃

−1
s Tr,s

)−1
T′r,sΠ̃

−1
s ys. The estimator

derived in this way is expected to perform better that the estimator calibrated only on the first moment
of the principal components.

4 Application to the Mediametrie Data

We verify in this section the suggested estimators on Médiamétrie data. The application here is about
panel Mediamat data of 6 to 13 September 2010. The population consists of 9750 individuals aged
of more than four year old watching a channel during this time period. The available information on
sample and population are at two levels:

1. The variable describing the INSEE Region and Household: the agglomeration size of residence,
age and socio-professional category of the Household Head, age and activity of the house-
keeper/resident, number of persons per household, presence of children of less than 15 year
old, number of televisions, mode/source of reception (satellite, ADSL cable, TNT, Analogical
hertzien), contracted to CanalSat, contracted to Canal+, possession of mini-computer, access to
Internet.

2. The variables describing the individuals: sex, age, socio-professional status, type of Employe-
ment.

The variables of interest are the Listening Duration of individuals by channel and by day.

We have performed a small simulation study to verify the performance of the principal component
regression estimator and ridge estimator. We have considered the sample of 6-13 September 2010 as
our study population from which we selected 1000 random samples without replacement of size 500.
The considered variable of interest is the Listening Duration on a certain channel on Monday 13 of
September considering as auxiliary variables the age, the socio-professional category, the geographic
region, the sex and the Listening Duration of the same channel during the previous Monday. The
X matrix is build of 19 columns and is ill-conditioned. The GREG estimator does not always work
because the X′sΠsXs matrix has the minimum eigen-value λmin equal to zero for many samples. We
have therefore, compared principal component and ridge estimators on 1000 samples through the
relative-bias and the relation between the MSE of the proposed estimators and that of the Horvitz-
Thompson estimator which does not take into account the auxiliary information. The r number of
principal components were chosen in function of λj/

∑
λj and the constant k by using the ridge trace

(Hoerl and Kennard, 1970). For t̂PC with r = 15 principal components, we obtain MSE(t̂PC)

MSE(t̂HT )
= 0.56.

We trace in Figure 1 (b), the ratio between the MSE of t̂ridge and the MSE of t̂HT for many values
of k and for 10 repetitions of the simulation study. We can remark that for small values of k the gain
is important (65%), while for large k, the t̂ridge estimator approaches to t̂HT .
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Figure 1: Ratio of the means square errors between the ridge and the Horvitz-Thompson estimators
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