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1 Introduction

In clinical evaluation processes, meta-analysis is carried out to synthesis results of several trials.
However, most of meta-analysis methods build models on summary statistics reported from each trial,
and therefore a pooled effect size is estimated with ignoring scheme of sampling individual patient
data (IPD), which should have been measured in each trial. Above all, meta-regression (MR) models,
which are techniques for modeling relationship between an effect size and trial-level covariates with
intending to search characteristic factors, have been often subjected to criticism. The MR models
incorporate as covariates summary statistics on background factors of patients for each trial, such
as a mean age and a proportion of male patients. This means that characteristics of patients are
evaluated expediently, with unavailable patient-specific covariates replaced by trial-specific covariates.
It often involves a technical issue that is referred to as ecological bias, and leads to limitation in
interpretation. Especially, it is well known that the treatment-covariate interaction effect estimated
by fitting MR models has seriously lower statistical power in comparison with those estimated by
fitting models to IPD, where we refer to these models as IPD models. Berlin et al. (2002) conducted
analyses of both individual patient-level and group-level data from five trials in their clinical research,
and showed that the group-level analyses failed to detect interaction between treatment and a patient
characteristic factor. Some meta-analysis methods based on IPD models have been discussed among
many researchers as alternative solutions to this kind of problems; however, they cannot always be
applied to all situations due to difficulties in obtaining IPD.

First, we discuss limitation underlying MR models as the following sources of above problems: (a)
MR models can essentially estimate only between-trial interaction, (b) MR models cannot incorporate
within-trial variability of covariates. Then, based on these discussion, we suggest a meta-analysis
method using simulated IPD, in which parameters of an IPD model are estimated from trial-level
summary statistics and pseudo-IPD are then reconstructed by statistical simulation from the estimated
IPD models. It is easy to extend this method to combine additional IPD from some other trials, if
available. Once pseudo-IPD are generated, more flexible and comprehensive statistical methods can
be applied to the reconstructed IPD, and difficulties in IPD collection would be cleared out.

1.1 IPD and MR models
Suppose that we observe one continuous outcome response and one continuous covariate of interest
for each patient, and that patients are assigned to either treatment group (T) or a control group (C)
in each trial (i = 1, . . . , I), with niT and niC patients respectively. Let yij and zij be a patient-level
response and a covariate observed for the j-th patient (j = 1, . . . , ni) in the i-th trial, and let xij be
coded 0/1 to denote control/treatment group. Given IPD in each trial, a common IPD model

yij = ϕi + θxij + µzij + γBxij z̄i + γWxij(zij − z̄i) + ϵij , ϵij ∼ N(0, σ2
yi)(1)

is fitted to each observation (yij , xij , zij), where ϕi is a fixed trial effect, θ is the mean treatment
effect, µ is the mean change in control group response for a one-unit increase in zij , γB and γW are the
between-trial and within-trial effect parameters of treatment-covariate interaction. z̄i = n−1

i

∑I
i=1 zij
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denotes the mean covariate value in i-th trial. Note that IPD models (1) separates between-trial
and within-trial effect of the treatment-covariate interaction. This kind of modeling framework for
the hierarchical data is recommended in some literatures (e.g. Neuhaus & Kalbfleisch (1998)), and a
related issue in meta-analysis is discussed in detail by Riley et al. (2008).

On the other hand, if available summary statistics in each trial include the mean response difference
between groups di = n−1

iT

∑
j∈T yij −n−1

iC

∑
j∈C yij , its variance Var(di), and the mean covariate z̄i, an

MR model
di = α + βz̄i + ϵi, ϵi ∼ N(0, σ2

di)(2)

is fitted to the statistics (di, z̄i), where σ2
di = Var(di) is assumed to be known.

2 Limitation underlying MR models

2.1 Source (a)

Taking into account an assumption in the MR model (2), we encounter an apparent problem due to
source (a). If one assumes zij = z̄i in the IPD model (1), the same form as the representation of the
MR model (2) is derived through a simple development. Thus, α and β in the MR model (2) are
equivalent to θ and γB, respectively, in the IPD model (1). However, we have more interest in the
parameter γW, increase in treatment effect according to one-unit increase in a patient-level covariate
zij . If we intend to estimate γW using the estimate of γB expediently, this might lead to an incorrect
conclusion. In particular, as is well known in epidemiological study, identifying characteristics of
patients with aggregated data by such MR models is subject to bias or confounding, which is known
as ecological bias (Morgenstern, 1982). Riley et al. (2008) advocated that it is the only solution to
this problem to collect additional IPD from some trials.

2.2 Source (b)
For simplicity, we assume that it is valid to fit an IPD model under the assumption of γB = γW = γ,

yij = ϕi + θxij + µzij + γxijzij + ϵij , ϵi ∼ N(0, σ2
yi)(3)

to each observation (yij , xij , zij). This is the case where the above source (a) essentially causes no
problem. Simmons & Higgins (2007) compared the power function of treatment-covariate interaction
effect in an MR model with that in an IPD model under the following assumptions: (i) IPD distributes
according to the model (3), where σ2

y1 = · · · = σ2
yI = σ2

y , and (ii) all trials are balanced, so treatment
and control groups have equal numbers of patients, ni/2, (iii) both the mean and the variance of
the covariate are the same in treatment and control groups within each trial. In the MR model (2),
denoting z̄∗i = z̄i−n−1

∑
i z̄ini, the power function of the hypothesis test for null hypothesis H0 : β = 0

against alternative hypothesis H1 : β = β1 with the significance level 0.05 is given by

Φ
(
−1.96 +

β1

2σy

√∑
iniz̄∗2i

)
+ Φ

(
−1.96 − β1

2σy

√∑
iniz̄∗2i

)
(4)

where Φ(·) denotes the CDF of the standard normal distribution (Simmons & Higgins, 2007). On the
other hand, in the IPD model (3), denoting z∗ij = zij − n−1

∑
ij zij and supposing that the covariates

zij in the i-th trial is normally distributed with mean mzi and variance σ2
zi , the power function of

the hypothesis test for null hypothesis H0 : γ = 0 against alternative hypothesis H1 : γ = γ1 with the
significance level 0.05 is given as follows (Simmons & Higgins, 2007).

Φ
(
−1.96 +

γ1

2σy

√∑
ini(σ2

zi + z̄∗2i )
)

+ Φ
(
−1.96 − γ1

2σy

√∑
ini(σ2

zi + z̄∗2i )
)

.(5)

The power functions (4) and (5) differ only in inclusion of σ2
zi. Therefore, IPD models are always

more powerful than MR models due to σ2
zi. Actually, although we could use the sample variance

of covariates in each trial, this information would be ignored in the MR model (2) because of the
assumption zij = z̄i.

From the above consideration, if γW is estimated by the MR model (2), we should be concerned
that bias should appear due to the source (a) and precision should decrease due to the source (b).
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The sufficient statistics for the parameters in the IPD model (1) are obviously
∑

j∈T yij，
∑

j∈C yij ,∑
j∈T zij ,

∑
j∈C zij ,

∑
j∈T y2

ij ,
∑

j∈C y2
ij ,

∑
j∈T z2

ij ,
∑

j∈C z2
ij ,

∑
j∈T yijzij and

∑
j∈C yijzij ; however,∑

j∈T yijzij and
∑

j∈C yijzij are not usually available in the case that the MR model is applied, and also∑
j∈T z2

ij and
∑

j∈C z2
ij are ignored in the MR model. This means that unless informations such as the

correlation between yij and zij are available, it is impossible to estimate individual-level relationships
(e.g. γW). Therefore, we derive the likelifood function based on the marginal distribution of yij in
the IPD model, obtained by marginalizing with respect to zij , treated as random variables. Once the
correlation between yij and zij are estimated, we can generate IPD by simulation, and then estimate
γW by fitting the IPD model to these pseudo-IPD with a standard method.

3 A method based on simulated IPD

In this section, a method based on simulated IPD is provided. This method, which has been inspired
by multiple imputation applied in the analysis of incomplete data with missing (Rubin, 1987), takes
the following simple procedure for inference of parameters: (i) by statistical simulation, pseudo IPD
(Simulated IPD: SIPD) are generated repeatedly from a model estimated using the observed summary
statistics (the mean and the variance of response and covariate), (ii) a standard IPD model is fitted
to each SIPD, (iii) resulting estimates for each SIPD are suitably summarized. Here, we refer to these
estimating process as SIPD method.

3.1 Simulation models

The most important step in above procedure is to identify the models for generating SIPD, which
we call simulation models. Such as a meta-analysis, inference on the relationships between individual
specific quantities using aggregated data is known as ecological inference. Wakefield & Salway (2001)
presented a statistical framework for ecological inference, describing parametric models for binary
response data that include within-aggregation variability of covariates, which is intended to reduce
the ecological bias. Jackson et al. (2006) suggested that the ecological inference might be improved by
supplementing aggregated information with some IPD from the other aggregations. In this subsection,
we apply these modeling scheme in the case of continuous responses.

For simulation models describing the relationships among (yij , xij , zij), we consider the following
IPD models with the assumption that zij is normally distributed (i = 1, . . . , I, j = 1, . . . , ni).

yij = ϕi + θxij + µzij + γBxij z̄i + γWxij(zij − z̄i) + ϵij , ϵij ∼ N(0, σ2
y),(6)

where

xij =
{

1, j ∈ T
0, j ∈ C

, zij ∼
{

N(mziT, σ2
ziT), j ∈ T

N(mziC, σ2
ziC), j ∈ C

,

and z̄i is a constant. Assuming that zij and ϵij are independenty distributed, we have the joint
distribution of (yij , zij) as a bivariate normal distirbution in each trial and group, that is,

[
yij

zij

]
∼


N2

([
myiT

mziT

]
,

[
(µ + γW)2σ2

ziT + σ2
y (µ + γW)σ2

ziT

(µ + γW)σ2
ziT σ2

ziT

])
, j ∈ T

N2

([
myiC

mziC

]
,

[
µ2σ2

ziC + σ2
y µσ2

ziC

µσ2
ziC σ2

ziC

])
, j ∈ C

,(7)

where myiT = ϕi + θ + (µ + γW)mziT + (γB − γW)z̄i and myiC = ϕi + µmziC. Now, let YSUM =
{(ȳiT, s2

yiT, ȳiC, s2
yiC, z̄iT, s2

ziT, z̄iC, s2
ziC), i = 1, . . . , I} be observed variables, where ȳiT = n−1

iT

∑
j∈T yij ,

s2
yiT = n−1

iT

∑
j∈T(yij − ȳT)2 and other summary statistics are also similarly defined. As described

previously, it is impossible to directly estimate parameters η = (ϕ1, . . . , ϕI , θ, µ, γB, γW, σ2
y) from the

model (6) because the sufficient statistics for η in the model (6) include not only YSUM but also∑
j∈T yijzij and

∑
j∈C yijzij . So, we consider the marginal distribution of yij , which is obtained by

integrating the bivariate normal distribution (7) with respect to zij , so that

yij ∼
{

N(myiT, (µ + γW)2σ2
ziT + σ2

y), j ∈ T
N(myiC, µ2σ2

ziC + σ2
y), j ∈ C

.(8)
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Estimating parameters (mziT, σ2
ziT,mziC, σ2

ziC) of the covariate distribution by the moment method,
i.e. m̂ziT = z̄iT, σ̂2

ziT = s2
ziT, m̂ziC = z̄iC, σ̂2

ziC = s2
ziC, we obtain the log likelihood function from (8)

as follows.

lSUM(η) =
I∑

i=1

[
−

niT((ȳiT − ϕi − θ − (µ + γW)z̄iT − (γB − γW)z̄i)2 + s2
yiT)

(µ + γW)2s2
ziT + σ2

y

(9)

−
niC((ȳiC − ϕi − µz̄iC)2 + s2

yiC)
µ2s2

ziC + σ2
y

− niT log((µ + γW)2s2
ziT + σ2

y) − niC log(µ2s2
ziC + σ2

y)

]
.

It is obvious from expression (9) that the sufficient statistics reduce to YSUM, thus the parameters η

are estimable and we get their maximum likelihood estimates (MLEs) η̂. A remarkable aspect of these
estimating process is that the correlation of (yij , zij) are replaced with that of (ȳiT, z̄iT) or (ȳiC, z̄iC).
Moreover σ2

ziT and σ2
ziC ignored in the MR model (2) contribute to estimating η.

It is easy to extend to combine IPD from some trials if they are available. Let YIPD = {(yij , xij , zij), i =
I + 1, . . . , I ′, j = 1, . . . , ni} be IPD observed actually in i-th trial (i = I + 1, . . . , I ′). In this case,
the total log likelihood function becomes lCOMB(η) = lSUM(η) + lIPD(η) where lIPD(η) is obtained by
fitting the IPD model (3) to YIPD, and lSUM(η) is the log likelihood for YSUM. Thus, the MLEs η̂ are
obtained by maximizing lCOMB(η) with respect to η.

3.2 A procedure of implementation

Regarding the model (6) as simulation models, we generate SIPD by sampling from the bivariate
normal distribution with the MLEs η̂ as their parameters. Let Y ∗

IPD = {(yij , xij , zij), i = 1, . . . , I, j =
1, . . . , ni} be the original IPD from which summary statistics YSUM are actually observed. The SIPD
method corresponds to random sampling from the conditional distribution p(Y ∗

IPD|YSUM, η̂) given YSUM

and the MLEs η̂, where p(Y ∗
IPD|YSUM, η̂) is the conditional density of Y ∗

IPD given YSUM in the bivariate
normal distribution (7). Let K sets of pseudo Y ∗

IPD which are simulated by random sampling from
p(Y ∗

IPD|YSUM, η̂) be Y
[k]
SIPD = {(y[k]

ij , x
[k]
ij , z

[k]
ij ), i = 1, . . . , I, j = 1, . . . , ni, k = 1, . . . ,K}. Once Y

[k]
SIPD are

generated, one can estimate the parameters of interest, say γW, by fitting more standard IPD models
to these data-set.

Note that inference of interesting parameters based on Y
[k]
SIPD sampled from p(Y ∗

IPD|YSUM, η̂) is similar
to conditional parametric bootstrap method (Efron, 1994). It is well known that in the analysis of
the incomplete data this method tends to underestimate the precision of resulting estimates. An
estimating procedure of γW by SIPD method is as follows.

S1. The MLEs η̂ are computed by maximizing lSUM(η) with respect to η.
S2. K sets of Y

[k]
SIPD, k = 1, . . . ,K in each trial or group are generated by sampling from the bivariate

normal distribution (7) with η̂ as their parameters.
S3. The IPD model (1) are fitted to Y

[k]
SIPD, and then the MLE γ̂

[k]
W of γW is obtained.

S4. The mean of γ̂W is computed by E(γ̂W) = K−1
∑K

k=1 γ̂
[k]
W , and a confidence interval is constructed

(or a p-value is computed) with the percentile method.

If YIPD = {(yij , xij , zij), i = I+1, . . . , I ′, j = 1, . . . , ni} as well as YSUM are observed, η is obtained by
maximizing lCOMB(η), and then Y

[k]
SIPD, k = 1, . . . , K on i-th trial (i = 1, . . . , I) are generated similarly

with the above procedure. Thus, the parameters of interest, say γW, are estimated by fitting the IPD
model (1) to (Y [k]

SIPD, YIPD) in the same way.

4 Simulation study

By using artificial data, we show the difference on the evaluation of the treatment-covariate interaction
effect among three kinds of methods (fitting models to the original IPD, fitting MR models and the
SIPD method).
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Table 1. Statistical power estimated by three methods.

(I, ni) = (6, 200) (I, ni) = (12, 100)

σ2
z σ2

zi MR IPD SIPD MR IPD SIPD

5 0.265 0.518 0.475 0.330 0.580 0.498

5 10 0.292 0.748 0.626 0.299 0.768 0.633

20 0.265 0.921 0.773 0.337 0.939 0.793

5 0.461 0.691 0.601 0.532 0.726 0.619

10 10 0.474 0.834 0.690 0.527 0.852 0.711

20 0.462 0.957 0.837 0.510 0.963 0.857

5 0.728 0.849 0.767 0.769 0.878 0.799

20 10 0.698 0.915 0.816 0.775 0.942 0.864

20 0.687 0.974 0.890 0.796 0.982 0.931

Table 2. Bias and variance of the estimators by three methods.

σ2
z σ2

zi Bias.MR Bias.IPD Bias.SIPD Var.MR Var.IPD Var.SIPD

5 −0.0543 −0.0016 −0.0530 0.0223 0.0178 0.0185

5 10 −0.0408 −0.0001 −0.0350 0.0215 0.0085 0.0133

20 −0.0465 −0.0020 −0.0193 0.0261 0.0040 0.0074

5 −0.0481 0.0005 −0.0451 0.0137 0.0169 0.0092

10 10 −0.0488 −0.0006 −0.0405 0.0108 0.0084 0.0079

20 −0.0427 0.0022 −0.0203 0.0123 0.0045 0.0056

5 −0.0542 −0.0001 −0.0529 0.0054 0.0173 0.0050

20 10 −0.0466 −0.0002 −0.0430 0.0053 0.0083 0.0044

20 −0.0433 −0.0029 −0.0212 0.0061 0.0038 0.0035

　

Simulation 1 The model for generating artificial data was as follows.

yij = 50 + 2xij + 0.3zij + 0.2xijzij + ϵij , ϵij ∼ N(0, 25).

We considered two scenarios of the number of trials and patients in each trial (I, ni) ∈ {(6, 200), (12, 100)},
where n1 = · · · = nI and niT = niC = ni/2. The covariates in each trial are simple random se-
quences from zij ∼ N(mzi, σ

2
zi), mzi ∼ N(30, σ2

z). Moreover, we controlled the covariate distribution
both between-trials and within-trial by nine scenario of σ2

z ∈ {5, 10, 20} and σ2
zi ∈ {5, 10, 20}, where

σ2
z1 = · · · = σ2

zI . The settings of each parameter was motivated to suppose that the theoretic values
of statistical power computed by expressions (4) and (5) differ. First, we generated IPD (yij , xij , zij)
and then fit the model (3) to the IPD to estimate γ. Next, we obtained summary statistics YSUM

from the IPD and then fit the MR model (2). Moreover, we generated K = 100 bootstrap samples of
SIPD Y

[k]
SIPD from YSUM in the way described in Section 3, and then fit the model (3) to each Y

[k]
SIPD

to get γ̂[k]. The purpose of Simulation 1 was to verify that how the variation of σ2
z and σ2

zi would
affect statistical power estimated by three methods. Here, we tested the null hypothesis H0 : γ = 0 (or
H0 : β = 0) against H1 : γ ̸= 0 (or β ̸= 0) by the three methods for 1000 sets of artificial data following
the above model, and then the power was estimated by (the number of rejected tests)/1000. Table 1
shows the resulting power. The SIPD method provided remarkably higher power of interaction effect
than those obtained by fitting MR models in all the scenarios. Even in the case of small size of σ2

z ,
SIPD method could retain the high power with σ2

zi, which was only slightly less than those obtained
by using the original IPD. Moreover, the test with more number of trials was more powerful.

Simulation 2 The model for generating artificial data was as follows.

yij = 50 + 2xij + 0.3zij + 0.2xij z̄i + 0.25xij(zij − z̄i) + ϵij , ϵij ∼ N(0, 25).

The number of trials and patients in each trial is (I, ni) = (12, 100), where n1 = · · · = nI and
niT = niC = ni/2. The setting for covariates in each trial was equivalent to those in Simulation
1. Note that we fit the model (1) to IPD or SIPD to estimate γW. In SIPD method, we generated
K = 100 bootstrap samples of SIPD. The purpose of Simulation 2 was to verify that how the difference
between γB and γW would affect the estimates obtained by the three methods. Firstly, we tested the
null hypothesis H0 : γW = 0 against H1 : γW ̸= 0 by two methods fitting the IPD model (to original
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　Figure 1. Statistical power estimated by two methods (+− IPD; ⃝− SIPD).
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IPD and SIPD) for 1000 sets of artificial data following above model, and then the power is estimated
by (the number of rejected tests)/1000. Note that the power of the test of H0 : β = 0 in fitting the MR
model (2) cannot be directly compared with the power of the test of H0 : γW = 0 becouse they should
give very different interpretation. Secondly, we compute the bias and the variance of the estimators
for γW and β by the three methods as follows: Bias.IPD = R−1

∑R
r=1(γ̂

∗r
W.IPD − γW), Var.IPD =

R−1
∑R

r=1(γ̂
∗r
W.IPD − γ̂W.IPD)2, Bias.MR = R−1

∑R
r=1(β̂

∗r
MR −γW), Var.MR = R−1

∑R
r=1(β̂

∗r
MR − β̂MR)2,

Bias.SIPD = R−1
∑R

r=1(γ̂
∗r
W.SIPD − γW), Var.SIPD = R−1

∑R
r=1(γ̂

∗r
W.SIPD − γ̂W.SIPD)2, where γ̂∗r

W.IPD,
β̂∗r

MR and γ̂∗r
W.SIPD denote the estimates of γW or β from the r-th data set (r = 1, . . . , R), which are given

by fitting the IPD model to original IPD, fitting the MR model and the SIPD method, respectively,
where γ̂∗r

W.SIPD is the mean values of K bootstrap estimates, so that γ̂∗r
W.SIPD = K−1

∑K
k=1(γ̂

[k]
W.SIPD)∗r.

Also, γ̂W.IPD = R−1
∑R

r=1 γ̂∗r
W.IPD, β̂MR = R−1

∑R
r=1 β̂∗r

MR, γ̂W.SIPD = R−1
∑R

r=1 γ̂∗r
W.SIPD. Figure 1

shows the resulting power, and Table 2 shows the bias and the variance. Although the power obtained
by the SIPD method became extremely lower, it was close to those obtained by fitting the IPD model
for bigger σ2

zi and σ2
z . One reason for this was thought that the downward bias and the variance

increase of γ̂W by SIPD method might reflect the resulting power, that is the size of σ2
zi and σ2

z

affected the bias and the variance of γ̂W respectively. Actually, although the bias and the variance by
SIPD method increased when σ2

zi = 5 and σ2
z = 5 respectively, they were much superior to those by

the MR model.

5 Conclusion

In this article, we have discussed technical issues on MR models applied to the evaluation on charac-
teristics of patients in meta-analysis. Especially, the treatment covariate interaction effect estimated
by fitting the MR model has seriously lower statistical power due to limitation in their structure.
Therefore, we have presented the SIPD method that was intended to improve power. From the result
of two kinds of simulation, it was shown that the SIPD method provided remarkably higher power of
interaction effect than those obtained by fitting the MR model. An evaluation on the bias and the
variance of the estimator for the parameter of interest also showed that SIPD method would be useful.

For future problems, although we generated multiple sets of SIPD based on conditional parametric
bootstrap, SIPD with nonparametric bootstrap is expected to be more proper in terms of the essential
principle of multiple imputation (Little & Rubin, 2002). Therefore, it would be considerable to improve
our method by incorporating Bayesian approaches, such as data augmentation. Moreover, a meta-
analysis combining summary statistics and IPD is enormously appealing as shown by Jackson et al.
(2006) and Riley et al. (2008), so we should also consider verifying the efficiency and the performance
of these analysis by SIPD method.
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