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Introduction 

Ranked set sampling (RSS) is a data collection technique which has been shown to lead to more 

precise estimators when compared with simple random sampling. The technique was introduced by McIntyre 

(1952) and numerous works have been done on this subject; see Stokes and Sager (1988), Patil et al. (1994), 

Ozturk (1999), Yu et al (1999) and Akkaya and Balci (2006). Patil et al. (1999) and Patil (2002) give an 

extensive bibliography about the subject. The method has also been extended to its ordered version by 

Balakrishnan and Li (2006, 2008). According to the classical ranked set sampling method, n random samples 

of size n are drawn from a population with the probability density function (pdf) )(xf  and the 

observations are ordered visually within each sample. Then, the ith ordered observation of the ith sample is 

measured exactly; i=1,2,…,n. In this way, a sample of size n is obtained from the ordered observations. The 

process is shown by the following scheme: 

 

RSS Scheme 
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Modified Maximum Likelihood Estimation 

Estimation of unknown parameters in ranked set sampling has been discussed by many authors; see 

for example Ozturk (2011). In this work, we will discuss the typical problems arising from the estimation of 

unknown parameters of a location-scale distribution and will use the modified maximum likelihood approach 
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which was firstly proposed by Tiku (1967) to overcome these problems. 

Let us firstly assume that the random variable X is coming from a location-scale distribution with pdf
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f . Because of the fact that observations of a ranked set sample are independent of each other, the 

likelihood function can be written as 

∏∏∏
=

−

=

−

=

−∝
n

r

rn

r

n

r

r

r

n

r
rn

zFzFzfL
1

)(
1

1

)(
1

)( )](1[)]([)(
1

σ
                                                  (1) 

where σµ)( )()( −=
rr

xz  and 

;,1
1

)!1()!(

!
)( )(

)(

1

)()(

)(: ∞<<−∞














 −
−















 −







 −

−−
=

−−

r

rn

r

r

rr

rnr x
x

F
x

F
x

f
rrn

n
xf

σ

µ

σ

µ

σ

µ

σ
     

                 (2)      

���� being the cumulative distribution function of the random variable X. Then, partial derivatives of the 

log-likelihood function to obtain the maximum likelihood estimators are given by 
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The equations in (3)-(4), however, do not admit explicit solutions due to the nonlinear functions  
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=  and therefore, closed form solutions of the maximum 

likelihood estimators cannot be obtained. This problem was also discussed by Zheng and Al-Saleh (2002). 

Tiku (1967) proposed the modified maximum likelihood method which uses Taylor series approximation by 

expanding nonlinear functions around the expected values of the standardized order statistics; see also Tiku 

and Suresh (1992) and Akkaya and Balci (2006). By applying Taylor series expansion to these nonlinear 

functions around the expected value of ����, one can easily obtain the closed form solutions for the 

estimators which are known to be modified maximum likelihood estimators (MMLE’s).  

 

MMLE’s for Normal Distribution  

Suppose that the random variable X has a normal distribution with mean 
 and variance ��. Then, 

the partial derivatives of the likelihood function L with respect to the location parameter 
 and the scale 

parameter � can be written as 
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where 

( )2exp
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The nonlinear functions in the likelihood for a ranked set sample of a normal �
, ��� can be expanded as 
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where      
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t  being the expected value of the rth order statistic for the standard normal distribution. Here also note 

that )1(21 +−=
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αα
 
and )1(21 +−−=

ini
ββ . After solving the equations (5) and (6), the resulting MML 

estimators are obtained as follows: 
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Unlike the classical maximum likelihood approach, MMLE's have closed form solutions and one does 

not need to use iterative methods to solve the likelihood equations. The MML estimator µ̂  is unbiased due 

to the symmetry. MMLE's are known to be highly efficient and robust; see Tiku and Suresh (1992). 

Moreover, MMLEs are asymptotically equivalent to maximum likelihood estimators under some general 

regularity conditions. For the proof, readers are referred to Bhattacharyya (1985) and Vaughan and Tiku 

(2000) for both complete and censored samples.  

 

Fisher Information Matrix  

The elements of the Fisher Information matrix can be obtained as follows: 
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Due to the complicated structures in the expectation operators, one cannot obtain the explicit 

expressions for the elements of the exact Fisher information matrix. However, a similar approach that was 

used in the MMLE can be utilized to obtain approximate values of these elements. 

 

Simulation Study 

We show the high efficiency of the MML estimators obtained from the ranked set sampling by simply 

comparing them with those of the classical simple random sampling (SRS) estimators. For this, a Monte 

Carlo simulation study with 10,000 runs has been conducted. The results in following table show that 

MMLE's are highly efficient which, in fact, is straightforward due to the definition of the RSS. 

 

Mean Square Error Comparisons for RSS and SRS 

 

n 

RSS SRS 

µ̂  σ̂  µ̂  σ̂  

4 0.1055 0.0999 0.2496 0.6577 

5 0.0692 0.0722 0.2015 0.5082 

6 0.0489 0.0527 0.1679 0.3973 

7 0.0375 0.0427 0.1423 0.3446 

8 0.0288 0.0351 0.1272 0.2855 

9 0.0234 0.0285 0.1102 0.2492 

10 0.0191 0.0238 0.0999 0.2219 

20 0.0050 0.0081 0.0502 0.1069 

50 0.0008 0.0016 0.0195 0.0408 

100 0.0002 0.0004 0.0098 0.0201 

 

Censored Samples 

 Many works so far have been done on complete samples; however, a limited number of 

works have noted the usage of ranked set sampling for censored samples; see for example Yu and 

Tam (2002). Some of the samples (shown in rows in the RSS scheme) may be subject to censoring. 

Especially in environmental problems, some of the selected observations may not be measured as 

they are below a detection limit. Because of this reason, a censoring indicator should be used in the 

likelihood function as Yu and Tam (2002) has considered. The MML method can also be employed 

for the purpose of obtaining explicit solutions of estimators. However, we do not give the details 

here for conciseness.  
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