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1 Introduction

Functional data are usually functions of time, and it is common that a group of data curves follow the

same pattern after they are aligned. The common pattern can be described by a shape function. In

order to estimate the shape function, it is important to align the curves. Studies on curve alignment

and shape function estimation can be found in literature. References can be found in Telesca and

Inoue (2008).

A natural approach for synchronizing a set of curves is to first choose a curve as a reference,

align other curves to the reference curve, and then estimate the shape function based on the aligned

curves. There are two interesting questions related to this approach. First, does the choice of reference

curve have a significant effect on the estimation accuracy of shape functions? If so, how should we

choose the reference curve? We have not found much studies on these questions in literature, so we

carried out several simulation experiments to find out the answers. From our simulation results, the

choice of reference curve does have a significant effect on estimation.

Below we describe a model for data curves follow the same pattern after alignment. Suppose

that m misaligned curves are observed at n equal spaced time points t1, . . ., tk. Let yik denote the

observed value of the i-th curve at time tk. Suppose that for 1 ≤ i, j ≤ m and 1 ≤ k ≤ n,

yik = fi(tk) + εik

= fj(µij(tk)) + εik,(1)

where fi(tk) is the shape function for the i-th curve evaluated time tk, which is also the j-th curve’s

shape function evaluated at warped time µij(tk), and εik is the error term. In (1), µij is the warping

function for the i-th curve when the j-th curve is used as the reference.

In (1), if the j-th curve is used as the reference and the warping functions µij ’s are estimated

by µ̂ij ’s, one can estimate the shape function fj treating yik as the observation of fj at time µ̂ij plus

an error term. If the estimation of fj at a point x involves only the µ̂ij ’s in a neighborhood of x, and

there are few µ̂ij ’s in the neighborhood, the estimation of fj at x may be unstable. This phenomenon

gives us the idea to choose a reference function so that the estimation of the common shape function

is stable.

We consider approximating the common shape function using B-spline basis functions. That is,

when the j-th curve is used as the reference, fj is approximated by

a1B1 + · · ·+ akBk,
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where B1, . . ., Bk form a B-spline basis. When µ̂ij ’s are used to estimate µij ’s and the estimation

errors are small, we have

yik ≈ a1B1(µ̂ij(tk)) + · · ·+ akBk(µ̂ij(tk)) + εik,

so the coefficients a1, . . ., ak can be regarded as regression coefficients and estimated using least

squared method. In such case, the estimation of the common shape function is stable if the estimation

of the coefficients is stable, which is related to the notion of A-optimal design or D-optimal design.

By considering an A-optimal design, one seeks to minimize the average of variances of coefficient esti-

mators; by considering a D-optimal design, one seeks to minimize the volume of a classical confidence

ellipsoid for the coefficients.

In this paper, we offer reference curve selection algorithms based on A-optimal/D-optimal de-

signs. The algorithms are in Section 2. We also carry out several simulation studies to examine the

performance of the proposed algorithms. Descriptions for the simulation studies and the results are

presented in Section 3.

2 Algorithm

In this section, we describe our algorithm for reference curve selection. Suppose that we have m

different curves of the same pattern after alignment, and each curve is observed at n time points t1,

. . ., tn. For 1 ≤ j ≤ m and 1 ≤ k ≤ n, let yjk be the observed value for the j-the curve at time tk. If

the i-th curve is chosen as the reference curve, then for 1 ≤ j ≤ m and 1 ≤ k ≤ n,

yjk = fi(µji(tk)) + εjk,

where fi is the shape function for the i-th curve, µji is the warping function for the j-th curve when

the i-th curve is used as the reference, and εjk is the error.

In this algorithm, we use cubic B-splines to approximate shape functions fi’s and warping

functions µji’s, where approximately 2n1/3 equally spaced knots are used. That is, each fi is of the

form of a B-spline fθ and each µji is of the form of a B-spline µη where θ and η are the vectors of

B-spline coefficients.

The algorithm is composed of the following 3 steps.

• Step 1. For a fixed i, the B-spline coefficients for the shape function fi are estimated using least

square method based on (yi1, t1), . . . , (yin, tn). That is, fi is estimated by fθ∗ , where

n∑
k=1

(yik − fθ(tk))2

is minimized at θ = θ∗. The estimator fθ∗ is denoted by f̂i. Similarly, for each j 6= i, the warping

function µji is estimated by µη∗ , where

(2)
n∑
k=1

(yjk − f̂i(µη(tk)))2

is minimized at η = η∗. The estimator of µη∗ is denoted by µ̂ji. For j = i, µ̂ji is defined as the

identity function.

• Step 2. For a fixed i, let t̃ = (t1, . . . , tn), and let µ̂ji(t̃) = (µ̂ji(t1), . . . , µ̂ji(tn)) be the vector of

adjusted times for the j-th curve with the i-th curve as the reference.
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The m vectors of adjusted times are combined into a vector t̃∗. That is,

t̃∗ = (µ̂1i(t̃), . . . , µ̂ni(t̃))

Suppose that B1, . . ., B` denote the cubic spline basis functions correspond to approximately

2(mn)1/3 equally-spaced knots in [0, 1]. Let X = ((B∗
1)T , . . . , (B∗

` )T ), where B∗
i is the row vector

of Bi evaluated at t̃∗.

The shape function fi is re-estimated as a linear combination of B1, . . ., B`, where the vector of

the coefficients is given by

(3) (XTX)−1XTY,

where Y is the column vector (y11, . . . , y1n, . . . , ym1, . . . , ymn)T . This re-estimated fi is denoted

by f̂∗i . The warping functions µji’s are also re-estimated using (2) with the f̂i replaced by f̂∗i .

Let µ̂∗ji’s denote the re-estimated µji’s.

Note that (3) gives the least square solution for the regression problem

Y = Xβ + ε.

For the design matrix X, we also compute two indexes

IndexA = trace((XTX)−1)

and

IndexD = det((XTX)−1)

for evaluating choosing the i-th curve as the reference based on the A-optimal and D-optimal

design criteria.

• Step 3. Carry out Step 1 and Step 2 for each i ∈ {1, . . . ,m}, and we obtain m IndexA values

and m IndexD values, which correspond to the m reference curves.

3 Simulation studies

In this section, we examine the performance of the proposed reference curve selection algorithm via

simulation experiments. In the simulation experiments, data curves are generated using the shape

function

m(t) = sin(2πt) + sin(t2),

which is also used in Sangalli et al. (2010) for curve generation. The warping functions are of form tα

and the error terms are distributed asN(0, σ2), where α ∈ {1/1.9, 1/1.7, 1/1.5, 1/1.3, 1, 1.3, 1.5, 1.7, 1.9}
and σ ∈ {0.05, 0.1}. The time points are n equally-spaced points in [0, 1], where n ∈ {10, 15, 20, 25, 30}.
Each experiment corresponds to a (n, σ) combination and is carried out 500 times. In each of the 500

replications, 9 data curves are generated using the 9 warping functions, the shape function and the

errors term distributions mentioned above.

For the simulation study, we use the quantity

SE(i) =
m∑
j=1

n∑
k=1

(fi(µji(tk))− f̂∗i (µ̂∗ji(tk)))
2
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to assess estimation accuracy when the i-th curve is used as the reference. A smaller SE value indicates

that the estimation of shape function is more accurate. For each set of 9 simulated curves, let

SE1 = min
1≤i≤9

SE(i),

SE9 = max
1≤i≤9

SE(i),

SEA be the SE value when the reference curve is chosen based on IndexA, and SED be the SE value

when the reference curve is chosen based on IndexD, and

AV (SE) =
1

9

9∑
i=1

SE(i).

Two ratios SEA/SE1, SED/SE1 and the quantities AV (SE)/SE1, SE9/SE1 are computed. The

averages of the four quantities over the 500 replications are given in Table 1. The results in Table 1

indicate that choosing a reference curve using the proposed algorithm gives smaller estimation error

comparing to choosing a reference curve at random.

σ = 0.05 σ = 0.1
SEA
SE1

SED
SE1

AV (SE)

SE1

SE9

SE1

SEA
SE1

SED
SE1

AV (SE)

SE1

SE9

SE1

n = 10 1.063 1.044 1.497 2.721 1.060 1.052 1.198 1.609

n = 15 1.167 1.167 2.214 5.241 1.085 1.081 1.383 2.246

n = 20 1.226 1.192 2.228 5.329 1.097 1.082 1.378 2.172

n = 25 1.407 1.236 2.687 6.791 1.140 1.100 1.508 2.621

n = 30 1.295 1.071 2.609 5.550 1.093 1.055 1.472 2.293

Table 1: Averages for
SEA
SE1

,
SED
SE1

,
AV (SE)

SE1
and

SE9

SE1
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