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Abstract

A number of methods from epidemiology, geo-statistics and small area modeling are available for the
analysis of disease incidence rates. A simple model assumed a Poisson log-linear relationship between
disease rates and other covariates while using random effects to model extra variation in Poisson model.
Bayesian modeling has the advantage of allowing the exact analysis of random effect and coefficient
models. This study estimates of the incidence of leishmaniasis at the provincial level. Leishmaniasis is the
third most common vector-borne disease and it is contracted through bites from sand flies. There are
about 250,000 estimated new cases of incidence of cutaneous leishmaniasis in Afghanistan and 67,000
cases in Kabul, thus making the city having largest incidence worldwide. Spatial hierarchical Bayesian
models were used to model the over-dispersion of the relative risk of leishmaniasis and take into account
the risk dependence between close areas. Bayesian Hierarchical Poisson models were constructed to
guantify the influence of hypothesized risk factors on provincial level relative risk of the disease. To take
into account the lack of independence of the risk between areas, random components were used. Also
geographical constraints operating under the outbreak of leishmaniasis in Afghanistan was explored. The
final model include altitude and two random components (intercept and slope) using a conditional
autoregressive (CAR) prior and has a deviance information criterion (DIC) of 247.761. Spatial scan
statistics confirmed cluster in North-Eastern and South-Eastern region of Afghanistan with a p-value of
<0.0001. The results confirmed geographical heterogeneity of leishmaniasis and thus will allow
governmental and non-governmental organization to make good health policies and choose areas to
implement control measures against Leishmaniasis in a more efficient way.
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Background

Leishmaniasis is the third most common vector-borne disease and very important protozoan
infection. It is contracted through bites from sand flies and can result in chronic and non healing sores.
This mostly occurs on any exposed skin and can be disfiguring and painful. The burden of the disease is
overwhelming; the psychological effect can be disturbing. In some society, women infected with this
disease are stigmatized and deemed unsuitable for marriage and motherhood (Reithinger, et al., 2005).
The World Health Organization (WHO) in 2000 reported that there are estimated 1.5 million annual cases
of leishmaniasis worldwide and Afghanistan, Algeria, Saudi Arabia, Brazil, Iran, Iraq, Peru and Syria
accounted for over 90% of the cases (Michael, et al., 2008).

There are about 250,000 estimated new cases of incidence of cutaneous leishmaniasis in
Afghanistan and 67,000 cases in Kabul, thus making the city having largest incidence worldwide
(Reithinger, et al., 2003). Humanitarian relief efforts began in 2002 after the fall Taliban in Afghanistan
and more than US $2 billion having been spent on health sector, nevertheless Afghanistan health
indicators has witnessed very little improvement (Toby, et al., 2006; Reithinger and Paul, 2007).

A number of methods from epidemiology, geostatistics and small area modeling are available for
the analysis of disease incidence rates. A simple model will assume a Poisson log-linear relationship
between disease rates and other covariates while using random effects to model extra variation in Poisson
model. Bayesian modeling has the advantage of allowing the exact analysis of random effect and
coefficient models. The impact of environmental influences on leishmaniasis cannot be ruled out and
human activities on the environment play a significant role in the dispersion and vectors thereby changing
the geographical distribution of the disease.

The major interest of this study is modelling the transmission dynamics of leishmaniasis,
guantification and predicting the disease incidence rate across provinces. Estimates of the incidence of
leishmaniasis at the provincial level were provided and also, explored what geographical constraints
operate under the outbreak of leishmaniasis in Afghanistan. Spatial hierarchical Bayesian models were
used to model the over-dispersion of the relative risk of leishmaniasis and take into account the risk
dependence between close areas. Bayesian Poisson models were constructed to quantify the influence of
hypothesized risk factors on district/provincial level relative risk of the disease. To take into account the
lack of independence of the risk between areas, a random component will be used.

Leishmaniasis incidence in Afghanistan

Data on cases of leishmanaisis incidence reported to Health Management Information System
(HMIS) and Ministry of Public Health (MoPH) in Afghanistan for the period of 2003 to 2009 were
collected and aggregated at province level. Data from HMIS and MoPH included a total of 148,564 new
cases leishmaniasis observed annually in Afghanistan over the period 2003-2009. Also collected were
population sizes for this period from Central Statistics Organization (CSO) of Afghanistan and the
latitude and longitude of the central district was supplied by Afghanistan Information Management
Services (AIMS). There are 34 provinces in Afghanistan; cases of leishamaniasis were not available in
some provinces (figure 1). The incidence of leishmaniasis disease in Afghanistan has been on the rise
especially in Kabul (figure 2). While the number cases of the disease reported across the provinces has
not been consistent, Kabul province has recorded a steady increase since 2003 and accounted for about
30% of the total cases (figure 2).


http://www.aims.org.af/
http://www.aims.org.af/
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Model Based analysis

Exploratory data analysis on incident leishmaniasis in Afghanistan showed geographical disparity
in the occurrence of the disease (figure 1). The standard incidence rate (SIR) was calculated for each
province of Afghanistan and were mapped in figure 3. The map showed areas with high and low risk,
with dark regions indicating high risk of leishmaniasis whereas the light regions indicate low risk.

Standard incidence rates suffers a set back because of small area count, there are extreme rates
where the populations are smallest and geographically close areas tend to have similar disease rates
(Clayton and Bernardinelli, 1992). Leishamaniasis disease is a non-contagious vector borne disease and
the observed count of cases at provincial level is assumed to occur independently and follows a Poisson
distribution.

In order to overcome the drawbacks of SIR, a model based on Spatial Hierarchical Bayesian
(SHB) analysis which will combine the specific provincial rate and the influence of neighborhood was
formulated. Furthermore, the altitude of the province capital was included as covariate in the SHB
analysis. Breslow and Clayton, 1993 proposed an approach of using random effect and random
coefficients in generalized linear mixed models (GLMMSs) to model extra variation in the Poisson model.

Spatial Hierarchical Bayesian Modeling

When the observed data are scarce, a maximum likelihood (ML) approach to the above model
may lead to unstable and largely uninformative ML estimates of the area-specific linear trends due to
Poisson sampling variation (Bernardinelli et al., 1995). Bayesian modeling has the advantage of allowing
the exact analysis of random effect and coefficient models (Lawson and Zhou, 2005). Several authors
have prescribed the use of Spatial Hierarchical Bayesian models for different disease epidemics, (Allepux
et al., 2007: Lawson and Zhou, 2005: Stevenson et. al., 2005 and Durr et al., 2005). SHB Poison models
were used to model the over-dispersion of the parameter of interest (SIR) and take into account the risk
dependence between close areas. Bayesian Poisson models were constructed to quantify the influence of
hypothesized risk factors on province level relative risk of leishmaniasis disease. To take into account the
lack of independence of the risk between provinces, a random component will be used.

All models were implemented in WINBUGS Software using Gibbs sampling (Lunn, et al., 2000),
this allow the iterative exploration of the posterior surface and leads to a set of parameter values rather
than a single value which is typical of ML methods (Lawson and Zhou, 2005).

Prior distribution

When modeling using Bayesian framework, one needs to specify a prior distribution for the observed
data. Several assumption for prior distributions were explored in this study, namely flat distribution thus
providing a non-informative prior, gamma distribution, conditional autoregressive (CAR) distribution.
The prior in the spatial model was similar to that proposed by Durr et al., 2005, with alpha0 assumed to
follow a flat distribution, and unstructured variability parameter was assumed to follow a normal
distribution with mean O and a precision variable while the structured variability term was allowed to
depend on the neighbors, this is sometimes called convolution Gaussian distribution or intrinsic Gaussian
CAR (Besag et al., 1991).
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Model selection and assessment
Different classes of Bayesian Poison hierarchical models of increasing complexity were formulated; the
models follow closely approaches by Lawson and Zhou, 2005 and Stevenson et al., 2005. This model
includes a random component with and without spatial structure. Several adjustments were made to the
model to give rise to what was called spatially smoothed and non-spatially smoothed model and explored
with varying prior distributions for the random effect.

For all model three chains were ran to help assess convergence and was visualized with time
series plots and Gelman-Rubin Statistics. Deviance information criterion (DIC) was used to compare all
models and model with the smallest DIC is said to be the “best fit”.

Areas of high risk

Several tests are available for spatial randomness that adjusts for an uneven background population. Such
test statistics are used to test whether or not the geographical distribution of disease is random. Previous
studies have shown that the spatial scan statistic has good power in detecting hot spot clusters (Kulldurf,
1997). SaTScan is a software program written to implement the scan statistic; it can be used to find
clusters in space and/or time (Kulldurf, 1997).

Results

Cases of leishmaniasis were collected from 34 provinces in Afghanistan over a period starting from 2003
to 2009. A total of 148,564 new cases were reported to HMIS and MoPH during this period with Kabul
recording the highest number (30%), followed by Kandahar (13%) and Balkh (10%) of all new cases. As
indicated by the graph right of figure 4, there is a weak association between leishmaniasis cases and
altitude of the provincial Centrum. North Eastern region of Afghanistan recorded the highest incidence of
the disease, while South Western region recorded no cases of the disease (figure 1). The expected number
of cases was estimated for each province and mapped as displayed in figure 5.

The standard incidence rate provides an assessment of excess risk in a province that would be
expected. The map of the standard incidence rate also indicated geographical disparities in the risk of the
disease; the North Eastern region has high risk of the disease more than the rest of the country. These
crude rates (SIR) must be interpreted carefully and maybe misleading because they are influenced by the
population size of the regions and neighboring provinces.

As mentioned before, SIR has drawbacks because it assumed provinces as independent. However,
in a spatial point of view, this is not the case and we are more interested in the more global spatially
distribution of the number of cases of leishmaniasis. A spatial hierarchical Bayesian analysis with random
components to take into account the lack of independence of the risk between provinces was formulated.

Several models with different complexities were explored that include random component that is
non-spatially structured heterogeneity and spatial structured heterogeneity. The model follow that of
Besag et al., 1991: the unstructured variability parameter (ui) was assumed to follow a normal
distribution, and the structured variability term followed the multivariate normal conditional
autoregressive (CAR) distribution. The non-spatially smoothing adjusted the relative risk estimates for
province with low numbers towards the overall mean, while including spatially structured heterogeneity
term was to condition the smoothing on neighboring provinces. The results of the models are discussed
below:
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log(z4) =10g(E;) +a, + (5, +by;) *Alt+u; +v, 5

All models were run in WINBUGS via Gibbs sampling and the posterior distributions were estimates.
Three chains were run and of 15,000 iterations and the convergence were checked by trace plot and
visualized by Gelman and Rubin plot. Model selection was done by looking at the Deviance Information
Criterion (DIC) to assess the goodness-of-fit and model complexity (Spiegelhalter et al., 2002). Table 1
summarizes the models with their level of complexity and value of DIC (the smaller the better). The
results for the final models with the smallest DIC were selected for presentation in table 2.The models
with smaller DIC values are those with altitude as covariate and with random components (Table 1). The
final model selected as the best include altitude as covariate and two random components that is, random
intercept (unstructured and structured) and random slope. The chosen model has a DIC value of 247.761
and allow for over-dispersion and spatial correlation through the use of conditional autoregressive prior.
The unstructured heterogeneity term (U;) followed a normal distribution with a mean of 0 and variance
o, while the structured heterogeneity term (V;), estimated using a normal distribution with a provincial
dependent mean and weighted variance (weighted by adjacent provinces). In this model SIR are smoothed
locally towards the mean risk in the set of neighbouring areas (Lorenzo-Luaces et al., 2009).

Three chains were run of 5000 iterations as burn-in phase and 15000 iterations were run to
estimate the variables. Convergence was visually assessed by Gelman and Rubin plot and convergence
was satisfied. This model has a DIC value of 247.761, table 2 showed the summary statistics for the
precision terms and posterior summaries. The relative risk (RR) from the final model is displayed in
Figure 6, higher RR was observed in North-Eastern, central and South-Eastern.

Discussion and Conclusion

The spatial scan statistic of Kulldorf was used for cluster detection and test local clusters, this confirm the
findings earlier using Bayesian hierarchical analysis. The results from spatial scan statistics, eight
provinces (Logar, Pakya, Kabul, Parwan, Khost, Paktika, Kapisa, Wardak) identified as primary cluster
and another two (Kandahar, Balkh) has secondary cluster. These provinces are mostly from North-Eastern
and South-Eastern and are term regions with high risk of the disease with a statistically significant p-value
of <0.0001. The clustered regions were as displayed in Figure 6.

Environment plays an important part in transmission and occurrence of vector borne diseases,
with areas in close proximity to each other having similar risk. The use of spatial statistics and
geographical information system in the study of geographical heterogeneity in hypothesize of risk
lieshmaniasis in Afghanistan is very crucial.

The model in this study suggests excess risk of the disease in the North-Eastern and South-
Eastern region of Afghanistan. This model includes non-spatially structured model with unstructured
heterogeneity term with a normal prior distribution and gamma hyperpriors for the precision terms and
spatially structured term with CAR (allowing for spatial dependencies in the estimation of relative risks)
priors plus a random slope. Further epidemiological analysis that includes additional demographic and
environmental variables could be explored to obtain a more consistent explanation.

The results confirmed geographical heterogeneity of leishmaniasis and thus will allow
governmental and non-governmental organization to make good health policies and choose areas to
implement control measures against Leishmaniasis in a more efficient way.
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Figurel.Distribution of cases of leishmaniasis incidence in Afghanistan 2003-2009: 2. Trend of
reported cases of leishmaniasis disease in five Afghanistan provinces with highest incidence during the
period of 2003 to 2009: 3. Standard incidence rate of leishmaniasis in Afghanistan during the period
2003 to 2009: 4. Scatter plots of total cases of leishmaniasis against altitude: 5. Expected incidence of
Leishmaniasis in Afghanistan during the period 2003-2009.6: Relative Risk estimated by Hierarchical
Bayesian Model for Leishmaniais cases in Afghanistan from 2003 to 2009 with non-structured and
spatial random intercept and random slope controlling for Altitude and Population.
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Table 1. Summary of results of Hierarchical Bayesian model from WinBUGs with different
complexities (Bold face are explored further)

Model Description Dbar Dhat pD DIC
Non-spatial random
effects:
Model 1 Non-structured random 245.357  201.060 44.297 289.653
intercept
Model 2 Altitude with non-structured 254.126  201.025 53.101 307.227

random intercept

Spatial random effects:

Model 3 Altitude with non- 234.162  200.808 33.353 267.515
structured & spatial
random intercept

Model 4 Spatial random intercept 53654.200 206.538 53447.600 107102.000

Model 5 Non-structured & spatial 261.268  200.906 60.362 321.631
random intercept

Model 6 Altitude with spatial 71671.000 4662.080 67008.900 138680.000
Random intercept

Model 7 Altitude with non- 224.612  201.463 23.149 247.761

structured & spatial
(random intercept &
slopes)

Table 2. Posterior summary of results of Hierarchical Bayesian model from WinBUGs : non-
spatial regression models; spatial regression model with random intercept only and spatial
regression with both random intercept (non-structured & spatial) and slope models

Model Mean Standard MC error  Credible interval
error

2.5% 97.5%
Intercept -0.1426 0.1825 0.0125 -0.4883 0.2016
Altitude 480.2533 679.0460 6.3778  -0.0001 0.0002
Variance of random intercept (non-spatial) 19770 7476  107.6000 8349 36120
Variance of random intercept (spatial) 208 489.1000 23.7200 1.7770 1389
Variance of random slope 1176 1629 74.8300 21.4100 5641
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