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1. Introduction

For discriminant analysis with (q + 1) p-dimensional populations, most inferential problems are

based on two matrices Sb and Sw of sums of squares and products due to between-groups and within-

groups, respectively. In this paper we are interesting in asymptotic behaviors of the coefficients on

the linear discriminant functions, which are the characteristic vectors of S−1
w Sb. Under normality

Sb and Sw are independently distributed as Wishart distributions Wp(q,Σ;Ω) and Wp(n − q − 1,Σ),

where n is the total sample size and Ω is the noncentrality matrix whose order is usually assumed to

be O(n). Since the large-sample asymptotic distributions of the characteristic roots were derived by

Hsu (1941), the results have been extended (Fujikoshi (1977), Fujikoshi et al. (2010), Glynn (1980),

Muirhead (1978, 1982), Sugiura (1976), etc.) by obtaining their asymptotic expansions and treating

the characteristic vectors. However, these approximations become increasingly inaccurate as the value

of p increases for a fixed value of n. On the other hand, we encounter to analyze high-dimensional

data such that p is large compared to n.

Recently the distributions of the characteristic roots were studied in a high-dimensional situation

where p/n → c ∈ (0, 1) by Fujikoshi et al. (2008). In this paper we extend the high-dimensional

asymptotic results to the case that Ω has any multiplicity, and study asymptotic behavior of the

transformed characteristic vecors, which may be applied for statistical inference of the coefficients

on the linear discriminant functions. We also discuss with similar problems in canonical correlation

analysis. Some relationships between high-dimensional and large-sample approximations are pointed.

Further, it is noted that the consistency properties of the sample roots and the vectors in large-sample

case do not hold in high-dimensional case.

2. Canonical Discriminant Analysis and Roots

Canonical discriminant analysis is a statistical procedure designed to discriminate between sev-

eral different groups in terms of few discriminant functions, based on given multivariate observations

on individuals in each population. Suppose that we have (q + 1) p-variate populations with mean

vectors µi and the same covariance marix Σ (i = 1, . . . , q+1), and ni observations, xij(j = 1, . . . , ni),

are available from the ith population. Let Sb and Sw be the matrices of sums of squares and products

due to between groups and within groups, respectively. Then they are defined as

Sb =
q+1∑
i=1

ni(x̄i − x̄)(x̄i − x̄)′, Sw =
q+1∑
i=1

ni∑
j=1

(xij − x̄i)(xij − x̄i)
′,

where x̄i is the sample mean vector of the ith population, and x̄ is the total mean vector.

We assume that the p-variate populations are normal. Then Sh and Se are independently dis-

tributed as a noncentral Wishart distribution Wp(q,Σ;Σ
1/2ΩΣ1/2) and a central Wishart distribution
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Wp(n− q − 1,Σ), respectively, where n =
∑q+1

i=1 ni,

Σ1/2ΩΣ1/2 =
q+1∑
i=1

ni(µi − µ̄)(µi − µ̄)′,

and µ̄ = (1/n)(n1µ1 + . . .+ nq+1µq+1).

In canonical discriminant analysis, it is fundamental to study the distribution of the charac-

teristic roots and vectors of S−1
w Sb. Let ℓ1 > · · · > ℓt > ℓt+1 = · · · = ℓp = 0 be the characteristic

roots, where t = min(p, q). In the following we consider the case q ≤ p, so, t = q, since we are

interesting in the case that p is large. Further, we assume that Sw is nonsingular, which is equivalent

to assuming n− q− 1 ≥ p. The matrix Ω is a population matrix corresponding to S
−1/2
w SbS

−1/2
w . Let

ω1 ≥ . . . ≥ ωp ≥ 0 be the characteristic roots of Ω. For their multiplicity, we assume that

ω1 = · · · = ωq1 = nλ1,

ωq1+1 = · · · = ωq1+q2 = nλ2,

...

ωq−qr+1 = · · · = ωq = nλr = 0,

where λ1 > λ2 > · · · > λr = 0,
∑r

α=1 qα = q. Suppose that

A1 : q is fixed, and c = p/n → c0 ∈ [0, 1).(1)

For α = 1, . . . , r, put

Zi =

√
m

σα
(ℓi − µα), i ∈ Jα = {q1 + · · ·+ qα−1 + 1, . . . , q1 + · · ·+ qα},(2)

where m = n− p+ q, and

µα = c+
n

m
λα, σ2

α = 2c(1 + c) + 4(1 + c)
n

m
λα + 2

(
n

m
λα

)2

.

Then, it is shown that the normalized roots (Z1, Z2, . . . , Zq) are asymptotically distributed as

r∏
α=1

f1({zi, i ∈ Jα}; qα),(3)

where

f1({zi; i ∈ Jα}; qα) =
πqα(qα−1)/4

2qα/2Γqα(
1
2qα)

exp

−1

2

∑
i∈Jα

z2i

 ∏
i<j;i,j∈Jα

(zi − zj).

The result when all the population roots are simple was derived by Fujikoshi, Himeno and Wakaki

(2008). Further, putting c = p/n = 0 and q/n = 0 in (2) and (3), we can see that the result is

reduced to the large-sample result due to Hsu (1941a). On the other side, Johnstone (2008) derived

the asymptotic distribution of the largest root ℓ1 when p/n → c0 ∈ (0, 1) and q/n → c1 ∈ (0, 1).

3. Characteristic Vectors in Canonical Discriminant Analysis

Let hi be the characteristic vector corresponding to the i-th characteristic root ℓi of S
−1
w Sb with

h′
iSwhi = n, so that they are the solutions of

Sbhi = ℓiSwhi, h′
iSwhj = nδij , i, j = 1, . . . , p,(4)

where ℓ1 > · · · > ℓt > ℓt+1 = · · · = ℓp = 0 and t = min(p, q). The functions h′
ix, i = 1, . . . , t are called

canonical discriminant functions. We are interesting in asymptotic behavior under (1).
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When q = 1, the non-zero characteristic root is only one. The characteristic root and vector are

explicitly expressed as

ℓ =
n1n2

n(n− 2)
D2, h =

√
n

D
S−1
w (x̄1 − x̄2)(5)

where D2 = (x̄1 − x̄2)
′S−1(x̄1 − x̄2) and (n − 2)S = Sw. For high-dimensional approximations, the

following expressions are useful. Let a be any fixed p-dimensional vector, we have:

D2 =
y1 + (z1 + τ)2

y2
, τ =

√
n1n2/n∆, ∆ =

{
(µ1 − µ2)

′Σ−1(µ1 − µ2)
}1/2

,

a′S−1
w

√
n1n2

n
{x̄1 − x̄1 − (µ1 − µ2)} =

(a′Σ−1a)1/2

y2

{
z1 + z2

(
y1y3

y4(y5 + z22)

)1/2
}
,

where z1, z2 are standard normal variates, yi, i = 1, . . . , 5 are chi-squared variates with fi degrees of

freedom, they are all independent, and

f1 = f3 = p− 1, f2 = n− p− 1, f4 = n− p, f5 = p− 2.

For a general q(≤ p), consider the transformation from Sb and Sw to S̃b = Γ′Σ−1/2SbΣ
−1/2Γ and

S̃w = Γ′Σ−1/2SwΣ
−1/2Γ, where Γ is an orthogonal matrix such that Γ′ΩΓ = diag(ω1, . . . , ωp). We can

write S̃b = ZZ ′, where Z is the random matrix whose elements are independent normal variates with

the same variance 1 and

E(Z ′) = M ′ = (D√
ω, O)′, D√

ω = diag(
√
ω1, . . . ,

√
ωq).

Let B = Z ′Z and W = B1/2(Z ′S̃wZ)−1B1/2. Then

B ∼ Wq(n, Iq;Dω), W ∼ Wq(m, Iq)

and B and W are independent, where Dω = diag(ω1, . . . , ωq). Note that the nonzero characteristic

roots of S−1
w Sb are the same as the characteristic roots of W−1B. Now we consider the characteristc

roots and vectors of W−1B which are the solutions of

Bai = ℓiWai, a′
iWaj = nδij , i, j = 1, . . . , q.(6)

The it holds that

ai = B−1/2Z ′Γ′Σ1/2hi, i = 1, . . . , q.(7)

Put

U =
1
√
p
(B − pIq −Dω), and V =

1√
m
(W −mIq)

which imply

B = m

(
Dδ +

1√
m

√
rU

)
, and W = m

(
Iq +

1√
m
V

)
,(8)

where r = p/m. Substituting (8) to (6), we obtain a perturbation expansion for ai when ωi is simple.

Using the perturbation expansion we can derive high-dimensional asymptotic distribution of ai.

4. Canonical Correlation Analysis

Let x1 = (x1, . . . , xq)
′ and x2 = (xq+1, . . . , xq+p)

′ be two random vectors having a joint (q + p)-

variate normal distribution with mean vector and covariance matrix given by

µ =

(
µ1

µ2

)
and Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,
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respectively, where Σ12 is a q × p matrix. Without loss of generality we may assume q ≤ p. Let S be

the sample covariance matrix formed from a sample of size N = n+1 of x = (x′
1,x

′
2)

′. Corresponding

to a partition of x, we partition S as

S =

(
S11 S12

S21 S22

)
.

Let ρ1 ≥ · · · ≥ ρq ≥ 0 and r1 > · · · > rq > 0 be the population and the sample canonical correlations

between x1 and x2. Note that ρ21 ≥ · · · ≥ ρ2q ≥ 0 and r21 > · · · > r2q > 0 are the characteristic roots of

Σ−1
11 Σ12Σ

−1
22 Σ12 and S−1

11 S12S
−1
22 S12, respectively. The sample canonical correlation vectors ai and bi

are the solutions of

S12S
−1
22 S21ai = r2i S11ai, aiS11aj = nδij , i, j = 1, . . . , p,

S21S
−1
11 S12bj = r2i S22bj , aiS22aj = nδij , i, j = 1, . . . , q.

There are many results on asymptotic distributions of the canonical correlations and the canonical

correlation vectors under a large sample framework; p and q are fixed, n → ∞, since the first result

was given by Hsu (1941b). However, it may be noted that these results will not work well as the

dimension q or p becomes large.

In order to make up the weak point, it is important to study asymptotic behaviors of the

canonical correlations and the canonical vectors when p and q are large. In this paper we consider

them under a high-dimensional framework such that

B1 : q; fixed, p → ∞, n → ∞, m = n− p → ∞, c = p/n → c0 ∈ [0, 1).(9)

When the population canonical correlation is simple, Fujikoshi and Sakurai (2009) obtained the fol-

lowing result:

√
n(r2α − ρ̃2α)

d→ N(0, σ2
α),

√
n(rα − ρ̃α)

d→ N(0,
1

4
σ2
αρ̃

−2
α ),(10)

where

ρ̃α = {ρ2α + c(1− ρ2α)}1/2, σ2
α = 2(1− c)(1− ρ2α)

2{2ρ2α + c(1− 2ρ2α)}.

In particular, putting c = 0 in (10) we have the well known large sample results:

√
n(r2α − ρ2α)

d→ N(0, 4ρ2α(1− ρ2α)
2),

√
n(rα − ρα)

d→ N(0, (1− ρ2α)
2).(11)

Here we note that the high-dimensional asymptotic result (10) depends on p through c = p/n, but the

large-sample result (11) does not depend on p and are the same for all p.

In this paper we note that the high-dimensional results can be extended to the case when the

population canonical correlations have multipilicity. We also give high-dimensional results on the

canonical correlation vectors which are similar to the results in discriminant functions.
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