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Two classical problems in nonparametric statistical analysis of recurrent event data are 
considered, both formalised within the framework of a simple, stationary renewal process. 

We first consider observation around a fixed time point, i.e. we observe a backward 
recurrence time  R  and a forward recurrence time  S.  It is well known that the nonparametric 
maximum likelihood estimator is the Cox-Vardi estimator (Cox 1969, Vardi 1985) derived from the 
length-biased distribution of the gap time R S+ . However, Winter & Földes (1988) proposed to use 
a product-limit estimator based on  S,  with delayed entry given by  R.  We clarify the relation of 
that estimator to the standard left truncation problem, see Keiding & Gill (1990).  

The second observation scheme considers a stationary renewal process observed in a finite 
interval where the left endpoint does not necessarily correspond to an event. (For an application to 
automobile insurance, see Keiding et al. (1998)). The full likelihood function is complicated, and 
we briefly survey possibilities for restricting attention to various partial likelihoods, in the 
nonparametric case again allowing the use of simple product-limit estimators.  

A more detailed version of this work, also containing references to earlier work, was recently 
published (Gill & Keiding, 2010). 
 
Observation of a stationary renewal process around a fixed point 

Winter & Földes (1988) studied the following estimation problem. Consider  n  independent 
renewal processes in equilibrium with underlying distribution function  H,  which we shall assume 
absolutely continuous with density  h  and support ( )0,∞  and hence hazard 

( ) ( ) ( )( )1t h t H tβ = − . Corresponding to a fixed time, say 0, the forward and backward recurrence 

times iS  and iR  are observed; then i i iQ R S= +  is a length-biased observation corresponding to the 
distribution function  H.  We quote the following distribution results: let  χ   be the expectation of  

H, ( )
0

1 ,H u duχ
∞

= −  ∫  then the joint distribution of ( ),R S  has density ( )1h r sχ − + , the marginal 

distributions of  R  and  S  are equal with density ( )1 1 H rχ − −   , and the marginal distribution of 

Q R S= +  has density ( )1qh qχ − , the length-biased density corresponding to  h. 

Winter and Földes considered the product-limit estimator 
 

 ( ) ( ):

11 1
ii Q t i

H t
Y Q≤

 
− = −  

 
∏  

 

where ( ) { }
1

n

i i i
i

Y t I R t R S
=

= < ≤ +∑  is the number at risk at time  t.  This estimator is the same as 

the Kaplan-Meier estimator for iid survival data 1, , nQ Q  left-truncated at 1, , nR R  (Kaplan & 

Meier 1958, Andersen et al. 1993). Winter & Földes showed that 1 H−   is strongly consistent for 
the underlying survival function 1 H− . 
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We shall show how the derivation of this estimator follows from a simple Markov process 
model similar to the one used by Keiding & Gill (1990) to study the random truncation model. 

First notice that the conditional distribution of Q R S= +  given that R r=  has density 
 

 ( )
( )

1

1  , 
1

h q
r q

H r
χ

χ

−

− ≤ ≤ ∞
−  

 

 
that is, intensity (hazard) ( ) ( )1h q H q−   , which is just the hazard ( )qβ  corresponding to the 

underlying distribution  H.  Now define for each  i  (the  i  is suppressed in the notation) a stochastic 
process  U  on [ ]0,∞  with state space { }0,1,2  by 

 

 ( )
0, 0
1,
2,   .

t R
U t R t R S

R S t

≤ <
= ≤ < +
 + ≤

 

 

We have ( ) ( ){ } ( )2 ,0P U t h U u u t o h+ = ≤ ≤ =  for ( ) 0U t = , and for ( ) 1U t =  (that is, 

R t R S≤ < + ) this is 
 

 { } ( )
( ) ( ),

1
h t

P R S t h R R S t h o h
H t

+ ≤ + + > = +
−

 

 
 by the above result on the hazard of R S R+ . That this depends on  t  but not on  R  proves that  U  

is a Markov process 
 
  0  1  2 α β→ →  
 

with intensities ( ) ( ) ( )1 1
t

t H t H r drα
∞

= − −      ∫  (the marginal hazard of  R,  equal to the residual 

mean lifetime function of the underlying distribution  H) and ( ) ( ) ( )1t h t H tβ = −   . 

The Markov process framework of Keiding & Gill (1990) now indicates that the product limit 
estimator 1 H−   is a natural estimator of the survivor function 1 H−  of the underlying distribution, 
and consistency and asymptotic normality may be obtained as shown by Keiding & Gill (1990, Sec. 
5). 
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Winter and Földes stated that ( ),R S  contain no more information than R S+  about  H. This 

is easily seen from the likelihood function based on observation of ( ) ( )1 1, , , ,n nR S R S , which is 

( )
1

n
n

i i
i

h r sχ −

=

+∏  from which the NPMLE of  H  is readily derived as 

 

 ( ) { }
1 1

1ˆ
n n

i i

i ii i i i

I R S t
H t

R S R S= =

+ ≤
=

+ +∑ ∑  , 

 
that is the Cox-Vardi estimator in the terminology of Winter and Földes (Cox 1969, Vardi 1985). 

It follows that the estimator 1 H−   is not NPMLE. The difference between the situation here 
and that of the random truncation model studied by Keiding & Gill (1990, Sec. 3) is that not only 
the intensity ( )tβ , but also ( )tα  depends only on the estimand  H.  

 
Observation of a stationary renewal process in a finite interval 

We consider again a stationary renewal process on the whole line and assume that we observe 
it in some interval [ ]1 2,t t  determined independently of the process. Cook & Lawless (2007, Chapter 

4) surveyed the general area of analysis of gap times emphasizing that the assumption of 
independent gap times implied by simple renewal processes is often unrealistic. 

We shall here nevertheless work under the assumption of the simplest possible model as 
indicated above. Because the nonparametric maximum likelihood estimator is computationally 
involved it may sometimes be useful to calculate less efficient alternatives, and there are indeed 
such possibilities. 

Under the observation scheme indicated above we may have the following four types of 
elementary observations 
 

1. Times ix  from one renewal to the next, contributing the density ( )ih x  to the likelihood. 

2. Times from one renewal  T  to 2t  (right-censored versions of 1.), contributing factors of the 

form ( )( )21 H t T− −  to the likelihood. 

3. Times from 1t  to the first renewal  T  (forward recurrence times), contributing factors of the 

form ( )( )11 H T t χ− −  to the likelihood. 

4. Knowledge that no renewal happened in [ ]1 2,t t , actually a right-censored version of 3., 

contributing factors of the form ( )( )
2 1

1
t t

H u du χ
∞

−
−∫  to the likelihood. 

 
Our interest is in basing the estimation only on complete or right-censored gap times, i.e. 

observations of type 1 or 2. When this is possible, we have simple product-limit estimators in the 
one-sample situation, and we may use well-established regression models (such as Cox regression) 
to account for covariates. Peña et al. (2001) assumed that observation started at a renewal (thereby 
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defining away observations of type 3 and 4) and gave a comprehensive discussion of exact and 
asymptotic properties of product-limit estimators with comparisons to alternatives. The crucial point 
here is that calendar time and time since last renewal both need to be taken into account, so the 
straightforward martingale approach displayed by Andersen et al. (1993) is not available.  

As noted by Aalen & Husebye (1991) in their attractive non-technical discussion of 
observation patterns, observation does however often start between renewals. (In the example of 
Keiding et al. (1998), auto insurance claims were considered in a fixed calendar period). As long as 
observation starts at a stopping time, inference is still valid, so by starting observation at the first 
renewal in the interval we can essentially refer back to Peña et al. (2001). A more formal argument 
could be based on the concept of the Aalen filter, see Andersen et al. (1993, p.164). The resulting 
product-limit estimators will not be fully efficient, since the information in the backward recurrence 
time (types 3 and 4) is ignored. It is important to realize that the validity of this way of reducing the 
data depends critically on the independence assumptions of the model. Keiding et al. (1998), cf. 
Keiding (2002) for details, used this fact to base a goodness-of-fit test on a comparison of the full 
nonparametric maximum likelihood estimator with the product-limit estimator. 

We finally mention that under the assumption of stationarity, we might as well study the 
phenomena in reverse time. Then type 1 is still type 1, but type 2 becomes type 3 and vice versa, 
while type 4 remain type 4. One may therefore use the product of the partial likelihoods based on 
types 1 and 2 observations in forward time and type 1 and 2 observations in reverse time, or in other 
words each full observation counted twice, observations of type 2 and 3 each counted once as right-
censored observation in wither forward time or reverse time, and type 4 observations still omitted.  
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