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Introduction

The designed-based sample survey theory has been very appealed to official statistics agencies
around all over the world. As pointed out by Skinner et al. (1989), the main reason for this is that
it is essentially distribution-free. In some specific situations, such as in small domains estimation and
in the presence of the non-response, the designed-based approach proved to be inefficient, providing
inadequate predictors. Supporters of the designed-based approach argue that model-based inference
much depends on the model assumptions which might not be true. On the other hand, interval
inference for target population parameters relies on the Central Limit theorem, which could not be
applied in many practical situations, where the sample size is not large enough and/or independent
assumptions of the random variables involved are not realistic.

Basu (1971) did not accept estimates of population quantities that depend on the sampling
rule, like the inclusion probabilities. He argued that this estimation procedure does not satisfy the
likelihood principle, to which he was adept to. The question that poses is: is it possible to conciliate
both approaches? In the superpopulation model context, Zacks (2002) shows that some designed-based
estimators could be recovered by using a general regression model approach.

In the Bayesian context, another appealing proposal of conciliating designed-based and model-
based approach was presented by O’Hagan (1985) in an unpublished report. O’Hagan (1985)’s
approach is based upon the Bayes Linear Estimator (BLE), therefore distribution-free. This
methodology is an alternative to the methods of randomization and appears midway between two
extreme views: on the one hand the procedures based on randomization and on the other based on
superpopulation models. His model formulation assumes only second order exchangeability, which
in practice means the need of stating first and second moments only, describing a prior knowledge
about the structures present in the population. He dealt with several population structures, such as
stratification and clustering by assuming suitable hypotheses about the first and second moments and
showed how some common designed-based estimators could be obtained.
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In this work we apply the Bayes linear method to a general regression framework, and so
all the estimators presented in O’Hagan (1985) can be obtained as particular cases of it. We also
present a Bayes linear approach for obtaining estimation of proportions for categorical data, including
discussions about the prior elicitation. We illustrate it with a simple numeric example.

Bayes Linear Estimation for Finite Population

Bayes methods have been receiving much attention and support from practical and theoretical
points of view. However, Goldstein and Wooff (2007) argues that as the complexity of the problem
increases, our actual ability to fully specify the prior or the sampling model is impaired. He concludes
that in such situations, there is a need to develop methods based on partial belief specification. One
of this methodologies, termed Bayes Linear, is exploit in this article and is described in this section.

Let ys be the vector of observations and θ the parameter to be estimated. Let us suppose that
the joint distribution of θ and ys is partially specified by only their first two moments:(

θ

ys

)
∼
[(

a
f

)
,

(
R AQ

QA′ Q

)]
,(1)

where a and f denote mean vectors and R, AQ, QA′ and Q the covariance matrix elements,
respectively, of θ and ys.

For each value of θ and each possible estimate d, we associate a quadratic loss function L(θ,d) =
(θ − d)′(θ − d) = tr(θ − d)(θ − d)′. The BLE of θ is the value of d which minimizes L(θ,d) within
the class of linear estimates of the form d = d(ys) = h+Hys, for some vector h and matrix H. Thus,
the BLE of θ, d∗, and its associated risk matrix, V (d∗), are respectively given by:

d∗ = a + A (ys − f) ,
V (d∗) = R−AQA′.

(2)

In the finite population context, the vector values of a characteristic of interest y = (y1, ..., yN )′

can be split up into two parts: y = (ys,ys̄); where ys is the known part provided by the sample
data and ys̄ is the unknown part. A general problem is to predict a function of the vector y, such
as the total T =

∑N
i=1 yi = 1′sys + 1′s̄ys̄, given the sample data ys̄. In many practical situations

the relation between the response variable and a set of auxiliary variables can be represented by a
regression model. In the next section, several estimators suitable for applications in many sampling
contexts are obtained as particular cases.

General Linear Regression Model

We consider the following robust regression model for finite population prediction purposes:

y = Xβ + ε, ε ∼ [0,V] ,
β ∼ [a,R] ,

(3)

where β is a p-vector of parameters and ε is a random N-vector with mean 0 and covariance V.
As the response vector y is partitioned into ys and ys̄, the matrix of auxiliary variables, X, is

analogously partitioned into Xs and Xs̄, as well as V, which is respectively partitioned into Vs and
Vs̄. The first aim is to predict ys̄ and then the total T . We do it in two steps detailed below.

After we have observed ys, we obtain β∗ via Bayes Linear method from the population model
(3) applied to the sample data, adapting the structure (1) and using the results in (2). The BLE of β

and its measure of dispersion are, respectively, given by:

β∗ = a + RX′s (XsRX′s + Vs)
−1 (ys −Xsa) ,

V (β∗) = C = R−RX′s (XsRX′s + Vs)
−1 XsR.

(4)
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From the following equations: C−1 = R−1 + X′sV
−1
s Xs and A = RX′sQ

−1 = CX′sV
−1
s , where

Q = XsRX′s + Vs, we can rewrite (4) as:

β∗ = C
(
X′sV

−1
s ys + R−1a

)
.

If we place a vague prior distribution on β, taking R−1 → 0, we obtain minimum least square
estimator of β, given by β̂ =

(
X′sV

−1
s Xs

)−1 X′sV
−1
s ys.

The second step is carried out by using some properties of conditional expectations to obtain:

Ê [ys̄ | ys] = E [Xs̄β | ys] = Xs̄β
∗

V̂ [ys̄ | ys] = Vs̄ + V [Xs̄β | ys] = Vs̄ + Xs̄CX′s̄.

Thus, the BLE for the total T and its associate variance are respectively given by:

T ∗ = 1′sys + 1′s̄Xs̄β
∗,

V (T ∗) = 1′s̄ [Vs̄ + Xs̄CX′s̄] 1s̄.
(5)

It is possible to obtain as particular cases , several estimators for different population structures,
including stratification, clustering and binary data, which was obtained by O’Hagan (1985). The
examples below ilustrates it for the case analogous to the simple random sampling. The first is
described in O’Hagan (1985), but the second is a original contribution.

Example 1: Fully Exchangeable

The case where the population has no relevant structure can be done by imposing:

E(yi) = m, V (yi) = v and Cov(yi, yj) = c, i, j = 1, . . . , N, ∀i 6= j.(6)

Applying the general result established in (5) to (6) with X = 1, a = m, R = c and V = σ2I, where
σ2 = v − c, we obtain the BLE of T and its associated variance:

T ∗srs = nȳs + (N − n)µ̂,
V (T ∗srs) = (N − n)σ2 + (N − n)2c σ2(σ2 + nc)−1,

(7)

where

ȳs = n−11′sys is the sample mean,

µ̂ = ωȳs + (1− ω)m is the expected value of ys̄,

ω =
nσ−2

c−1 + nσ−2
,where σ2 = v − c.

It should be noted that µ̂ is a weighted average of the prior mean m and the sample mean ȳs,
where ω is the ratio between two population quantities, which their interpretations are given bellow.

The mean m can be ultimately viewed as the investigator’s prior of the true population mean
ȳ. The uncertainty about yi is split up into two components: the uncertainty about the overall level
of the yi’s (between variation) and the one with respect to how much each yi may vary from that
overall level (within variation). A useful measure of variability of units within the population is given
by S2 = 1

N−1

∑N
i=1 (yi − ȳ)2. It is not difficult to show that E(S2) = v− c = σ2. Therefore, σ2 can be

interpreted as a prior estimate of variability within the population. We also obtain V (ȳ) = c+N−1σ2.
In many applications N is large and thus the constant c could be viewed as the between variation.

Letting v → ∞ and keeping σ2 fixed, that is, assuming prior ignorance, the estimates in (7)
yield to the total estimates in the designed-based context for the simple random sampling case: T ∗srs =
Nȳs and V (T ∗srs) = N2

(
1− n

N

)
σ2

n .
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Example 2: Ratio Estimator

When there is an auxiliary variable and it is reasonable to assume that the relationship between
the response variable and the explanatory variable can be modeled by a linear regression through the
origin, we use the ratio type estimator.

The hypothesis of exchangeability is applied to the rate yi/xi as follows:

E

(
yi
xi

)
= m, V ar

(
yi
xi

)
= v and Cov

(
yi
xi
,
yj
xj

)
= c, i, j = 1, . . . , N, ∀i 6= j.(8)

Applying the general result established in (5) to (8) with X = (x1, . . . , xN )′, a = m, R = c and
V = σ2diag(x1, . . . , xN ), where σ2 = v − c, we obtain:

T ∗ra = nȳs + (N − n)µ̂x̄s̄,

where

µ̂ = ω
ȳs
x̄s

+ (1− ω)m, is the expected values of ys̄,

ω =
σ−2nx̄s

(c−1 + σ−2nx̄s)
.

Letting v →∞ and n→∞, but keeping σ2 fixed, we recover the ratio type estimator, found in
designed-based approach: T ∗ra = Nx̄(ȳs/x̄s).

Bayes Linear for Categorical Data

Often we may be interested in cases where the observed characteristic is wether or not the
population unit possesses some attribute. The estimation of a proportion is a special case of estimating
a population mean. BLE for binary data was briefly introduced by O’Hagan (1985).

However, we developed, more generally, a model for when we are interested in analyzing more
than one attribute in a population. Let yij be the attribute variable such that yij = 1, if i-th unit has
j-th attribute; and yij = 0, otherwise.

The interest is to estimate p = (p1, . . . , pk)′, where pj = N−1∑N
i=1 yi j , j = 1, . . . , k, given

ys = (y11, · · · , yn1, · · · , y1k, · · · , ynk)′. But in such cases we usually do not have all the data, but some
statistics, such as the sample proportion. Thus, the estimator and its variance are obtained as:

p∗ = nȳs+(N−n)E(ȳs̄|ȳs)
N ,

V (p∗) = (N−n)2V (ȳs̄|ȳs)
N2 ,

(9)

where ȳs is a k-vector whose j-th position is given by the sample mean for category j, analogously we
have in ȳs̄.

As we are dealing with situations in which for each unit is only possible to associate an attribute,
so we have

∑k
j=1 pj = 1. Thus, it follows that p∗k = 1−

∑k−1
j=1 p

∗
j .

In the absence of any other structural information we suppose that the units in any given
category are second-order exchangeable, but we do not assume any exchangeability between units of
different categories. Our prior beliefs are represented, for i = 1, . . . , N , j = 1, . . . , k − 1, as follows:

mj = E(yij) = P (yij = 1), vj = V ar(yij) = mj(1−mj),
cj = Cov(yij , yi′j) = mj(mjj −mj) and σ2

j = vj − cj = mj(1−mjj),
(10)

where mjj = P (yi′j = 1 | yij = 1), for all i 6= i′.
For j 6= j′ we define the covariance between these categories as

djj′ = Cov(yij , yi′j′) =

{
mj(mj′j −mj′), if i 6= i′,

−mjmj′ , if i = i′.
(11)
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Using the general notation in (3), let θ be a vector of dimension k−1, Xs = Is, and the equations
in (10) and (11) can be compactly written as

E(ȳs) = Xsa = Xs(m1, . . . ,mk−1)′,

V ar(ȳs) =


Q11 . . . Q1 k−1

...
. . .

...
Qk−1 1 . . . Qk−1 k−1

 = XsRX′s + Vs,

where Qjj = cj + σ2
j /n and Qjj′ = djj′ −mjmj′j/n, for djj′ when i 6= i′.

Then, for i 6= i′ we conclude that

R =


c1 d12 . . . d1 k−1

d21 c2 . . . d2 k−1
...

...
. . .

...
dk−1 1 dk−1 2 . . . ck−1

 , Vs =
1
n


σ2

1 −m1m21 . . . −m1mk−1 1

−m2m12 σ2
2 . . . −m2mk−1 2

...
...

. . .
...

−mk−1m1 k−1 −mk−1m2 k−1 . . . σ2
k−1

 .

So, the estimator is a k − 1-vector described in (9) with the quantities defined above.

Prior elicitation

As mj = P (yij = 1) and mjj′ = P (yi′j = 1 | yij′ = 1), we have 0 < mj < 1, 0 < mjj′ < 1,
mjj′mj′ = mj′jmj , for all j 6= j′ and mjj + mj′j ≤ 1. And hence we get mj′j = mjj′mj′/mj , for all
j < j′.

But, if an expert have difficulties in specifying some of these conditional probabilities, the prior
correlation may help this task. Define ρjj′ as the prior correlation between two units in categories j
and j′, j = 1, . . . , k − 1. Note that, as −1 < ρjj < 1, then 2mj − 1 < mjj < 1, and thus using the
same argument we get other restrictions for the cases where we have two distinct categories.

Therefore, an alternative is to elicit ρjj′ , for all j, j′ = 1, . . . , k − 1 and deterministically we get

mjj = mj + ρjj(1−mj),

mjj′ =
mjmj′ + ρj′j

√
mj(1−mj)mj′(1−mj′)

m′j
,

mj′j = mjj′mj′/mj .

It should be noted that we have to specify ρjj′ , for j, j′ = 1, . . . , k − 1, in order to find mjj and mj′j

such that mjj +mj′j ≤ 1.
If we do not have much prior information on these parameters, we use non-informative priors.

To elicit mj , we take mj = 0.5, which results in a large vj , for all j = 1, . . . , k − 1. To elicit mjj′ ,
we use the fact that R is the prior covariance matrix of the regression parameters and its diagonal is
composed by cj . Therefore, we chose mjj that makes cj large, for j = 1, . . . , k − 1. Thus, we have to
take mjj ≈ 1, and hence we can arbitrarily chose mj′j that satisfies mjj +mj′j ≤ 1.

An Illustrative Example

We considered the estimator for three categories and evaluated the effect of the estimator for
the following values of N and n: (N = 10000, n = 50); (N = 10000, n = 200); (N = 1000, n = 50);
(N = 1000, n = 200). We fixed ȳs = (0.06, 0.30, 0.64) and we used a non-informative priors assuming
that: m1 = m2 = 0.5, m11 = m22 = 0.9 and so m12 = m21 = 0.05.

To construct a credible region we assume that p∗ follows approximately a multivariate normal
distribution. However, as we have p1 + p2 + p3 = 1 the parametric space is a simplex. So we did the
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95% confidence ellipse for each of the two population parameters using the chi-squared statistics with
2 degrees of freedom. The third remain parameter is determined by the restriction.

Figure 1 shows that the point estimates are similar, but the confidence regions shows that
when we increase the value of n the precision of the estimates increases too. Because, we assume
non-informative priors, the estimates obtained are closer to the sample proportion.
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Figure 1: BLE and the 95% simultaneous credible regions for each of the two

proportion parameters: (N = 10000, n = 50) - black solid line, (N = 10000, n = 200) - blue

solid line, (N = 1000, n = 50) - black dashed line, (N = 1000, n = 200) - blue dashed line.

Conclusions

To elicit a complete joint prior distribution in so many dimensions would be an enormous task.
The Bayes linear methods only require the elicitation of prior means, variances and covariances for
the parameters. This could facilitate the work of a person without statistical background conducting
this elicitation. An example of a successful elicitation using this estimators is in O’Hagan (1998).

We derived the designed-based estimators using the structure of the BLE applied to general
regression model approach. We extended the estimator to multiple categorical data, and we concluded
that even if the estimator has many quantities to elicitate, it is possible to reparametrize them or work
with non-informative priors to carry it out.
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ABSTRACT

In this work we set up a general regression framework, where all Bayes linear estimators
presented in O’Hagan (1985) are obtained as particular cases of it. We also presented a Bayes linear
approach for obtaining estimation of proportions for categorical data. We illustrate it with a numeric
example.
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