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1. Introduction

This paper presents the results of a computational experiment based on real data. It follows up
previous works Klaschka (2007, 2008), accomplished in the framework of a broader project aimed at
prevention of drivers’ microsleeps and the traffic accidents resulting from them. In the papers cited,
electroencephalography (EEG) frequency spectra of a group of experimental subjects (persons) were
analyzed in order to find accurate enough classifiers discriminating somnolence (sleepiness) from other
brain states. The classifiers considered were complex models whose building blocks were classification
forests.

The starting point of the present study was a strange and undesirable behavior of the best models
from Klaschka (2008), observed when the size of the forests, which was constant in the study cited,
was varied. Some of the models deteriorated with the growing forest size. After applying restrictions
to some parameters of the model (i.e. when the number of candidate models was reduced), the trend
of model deterioration with the growing forest size vanished or, at least, was considerably attenuated.

In Section 2, the data and classification problems are characterized. Section 3 describes the kind
of classification models studied and outlines the principles of model search. Section 4 summarizes the
results of previous works. In Section 5, the key section of the paper, the problem of model deterioration
with increasing forest size is demonstrated, together with the results of more restricted model search.
Finally, some brief concluding remarks may be found in Section 7.

2. Experimental data and classification problems

The data dealt with in the present study come from an experiment performed at the Joint
Laboratory of System Reliability, Faculty of Transportation Sciences, Czech Technical University,
Prague. (For a more detailed description of the experiment, see Faber et al. (2005).) The data set used
in the present analyses consists of the frequency spectra of 677 EEG segments from 18 experimental
subjects (individuals, persons). The data set L of 677 cases is the union of sets L1, . . . ,L18 (sizes
25–52) of the data contributed by the individual experimental subjects.

Each case is classified a priori as corresponding to one of the following brain states:

• somnolence (sleepiness) – 293 cases,

• relaxed wakeful state – 188 cases,

• mentation – mental activity, namely solving a part of the Raven test – 196 cases.

Each case possesses a vector of 62 numerical predictors – spectral powers (extracted from the
raw EEG signals using the Burg filter of order 20) for 31 frequencies 0–30 Hz by 1 Hz, from two EEG
electrodes (namely T3 and O1 channels – see Jasper (1958)).

There are four classification problems of interest:
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• The 3-class problem (Somnolence vs. Wakeful vs. Mentation),

• three partial 2-class problems, namely Wakeful vs. Somnolence, Mentation vs. Somnolence,
and Wakeful vs. Mentation.

3. Models and search strategies

The principal classification tool within this study is the Random Forests (RF) method by
Breiman (2001). Besides positive experience by other authors, there are additional good reasons
for such a choice. First, the method proved competitive in classification study by Štefka and Holeňa
(2007) where many different classification methods were applied to the same data as those used in
this paper. Second, the classification forest are, due to their ensemble nature, well suited for model
combining.

Let us denote the set of all subjects S. Let, further, for J ⊆ S, LJ = ∪j∈J Lj . Finally, let MJ

denote a model obtained applying the RF method to LJ .
A straightforward application of the RF method to data set L yields so called global model (MS

in the notation introduced above). When the RF method is applied to the data sets Li, we obtain
individual models Mi for subjects i ∈ S. It appeared in an early stage of the work with the given
data that the individual models outperformed clearly the global model. (It is not surprising since the
EEG signals are highly individual, so that a different classifier is needed for each subject rather than
a common one for all the subjects.)

Several previous works were focussed at so called mixed models. A mixed model for subject i

results from combining an individual model Mi with a model MJ trained on LJ where J is a set of
properly selected subjects (naturally, i /∈ J).

The models are combined through linear combinations of their votes. The votes v(x, k) of forest
consisting of trees T1, T2, . . . , Tm are given as the proportions of those trees in the forest that classify
predictor vector x into classes k = 1, . . . ,K. The votes of a mixed model are defined as a linear
combination

v(·, ·) = (1− α)vi(·, ·) + αvJ(·, ·)(1)

of the votes of forests Mi and MJ (0 ≤ α ≤ 1) for J 6= ∅.1 (For J = ∅, v(·, ·) = vi(·, ·).) The
class predicted by the mixed model is then given, as in the case of “ordinary” classification forest, by
majority voting, i.e. as argmaxk v(·, k).

Note that a mixed model is very similar to a classification forest: It is composed of a number of
trees whose votes determine the predicted class. The only difference in comparison with classification
forests is the fact that different subsets of the trees are trained on (bootstrap samples from) different
data sets and their votes have different weights.

A mixed model for subject i is given by a specific choice of set J and constant α. Various
strategies of the search for the “best” set J were developed and tested experimentally. While in
Klaschka (2007) only the maximal set J = S \ {i} is considered, work Klaschka (2008) studies more
sophisticated strategies of choice of J from within a (possibly big) set of candidates, e.g. stepwise
forward search, either unrestricted, or with some restrictions. As regards the choice of α, an exhaustive
search within a discrete grid (most often from 0 to 1 by 0.1) is performed.

During the search for the “best” model among candidate models (combinations of J and α),
models are mutually compared using misclassification error estimates calculated in the following way.

1In the previous works, the mixed models based on weights (1) were referred to as the Type 2 models. There were

Type 1 models, too, with different votes. The original Type 1 models, however, yielded worse results, so that they are

not dealt with here any more.
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Votes (1) where vi is replaced with out-of-bag votes2 vOOB
i are calculated for cases from Li. Predicted

classes for cases from Li are then determined by majority voting. Misclassification error estimate is
the proportion of those cases in Li whose predicted class does not match the true class. Of two models,
the one with lower error estimate is considered better.

The generalization error of the model chosen by a specific model search strategy as the “best” one
is estimated as the proportion of the misclassified cases by leave-one-out cross-validation (jackknife).

4. Previous results

In the study Klaschka (2008), several model search strategies were examined. Each strategy
was applied 100 times (fewer times for the most computationally expensive strategies) with different
random seeds. For the sake of simplicity, evaluation of strategy performance was based on the “overall
error” of the models yielded by the strategy, i.e. on the proportion of misclassified cases in L (or,
equivalently, on the weighted average of 18 errors of the mixed models for all the subjects i ∈ S, the
weights being proportional to the sizes of Li, i ∈ S).

Some of the strategies failed and some succeeded in reducing the misclassification error in com-
parison with the individual models. For instance, the simplest strategy with a single candidate set
S \ {i} for subject i was among those that have failed (for two of the four classification tasks, the
means of 100 overall errors were greater than the analogous results for the individual models).

One of those only partially successful strategies was the unrestricted stepwise forward search:
The best candidate set is found as the optimal element of a sequence o nested sets consisting of the
best singleton J1 = {j} (j 6= i), the best 2-element superset J2 of J1, the best 3-element superset J3

of J2, and so forth. The mean overall errors were lower than those of the individual models in all 4
classification tasks, but the improvements were small.

In comparison with the unrestricted stepwise forward search, the “winning” strategy of the
study performs a much less extensive model search (much fewer candidate sets are examined). It will
be referred to here, for the sake of briefness, by its code in the original work, as the F-strategy, and
the models resulting from it will be called F-models. In order to describe the strategy, the following
notation will be introduced. For i, j ∈ S, i 6= j, eij denotes the misclassification error of model
Mi on Lj , and eii is the out-of-bag estimate (Breiman (1996)) of the error of Mi. Further, rij will
denote the rank of eij in {eij ; i ∈ S} sorted in the ascending order. Each subject i ∈ S is assigned
score si =

∑
j∈S λrij where λ (the base) is a proper constant (0 < λ < 1). In the computational

experiments, λ was set to (
√

5− 1)/2 ≈ 0.62 (the well known golden section).
When building an F-model for subject i, there are nested candidate sets J1 ⊂ J2 ⊂ J3 ⊂ . . .,

where Jk is the set of subjects with k smallest sj values in {sj ; j ∈ (S\{i})}. Concerning the candidate
sets, note that their number is small, and they are “almost independent” of i. (The only differences
between the candidate sets for different subjects i follow from i /∈ J .)

The F-models reduced, in comparison with the individual models, the mean overall errors by at
least the factor of approx. 0.9 consistently for all 4 classification tasks.

For the detailed results of the computational experiment, see the source paper Klaschka (2008).

5. New problem and experimental results

In the study Klaschka (2008), the forest size (number of trees per forest) was set uniformly to
500, the default of the R extension package randomForest (R Development Core Team (2006), Liaw and
Wiener (2002)). Later on, the part of the experiment related to the individual models and F-models

2The trees in the forest are trained on different bootstrap samples from Li. The out-of-bag votes related to a case

are based on only those trees whose training set did not contain the case.
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was extended and various forest sizes – namely 100, 200, 500, 1 000, 2 000, 5 000, 10 000 and 20 000 –
tried out. All the calculations were repeated 50 times with different random seeds. (The reason why
the number of repetitions was smaller than in the earlier study was an extremely high computational
cost of the jackknife error estimates of the F-models for the biggest forest sizes: With 20 000 trees
per forest, a single overall error for the 3-class problem required approx. 36 hours on a computational
cluster node.)

The original aim of forest size varying was a fine tuning of the method (the F-strategy): The
improvement might have proved, in comparison with the individual models, either bigger for larger
forests, or, conversely, essentially the same for a smaller forest size.

Computational experimenting, however, lead to surprising and undesirable results: Fig. 1 shows
the mean overall errors (±2SE) of the individual models (dotted lines) and of the F-models (dashed
lines) for 8 forest sizes ranging from 100 to 20 000. (The solid lines will be explained below.) We
can see that the mean F-model errors, starting from the forest size of 1 000, increase for the 3-class
problem (Fig. 1a), and an even more dramatic deterioration takes place concerning the Mentation
vs. Wakefulness problem (Fig. 1b). That has changed the direction of the research and initiated the
present study.

Deterioration of the generalization properties with growing model complexity results often from
an overfit due to a too extensive model search. The tendency to overfit, however, is not, as a rule, a
property of the components of the mixed models, i.e. of the forests (Breiman (2001)). (Note that the
individual models, being “ordinary” forests, adhere to the rule, since their mean error curves in Fig. 1
are free of any deterioration.)

When building a mixed model, multiple pairs (J, α) of a candidate set and a constant are tried
out before a final one is found, and that is where overfit might take place. There is, seemingly, no
reason for the tendency to overfit to strengthen with the growing forest size, since the number of the
candidate models (i.e. of (J, α) pairs examined) does not change.

A possible explanation of the observed tendency might, however, be the following hypothesis:
Combining of bigger forests is more prone to overfit than that of the smaller ones. If so, a stronger
restriction of the model search (i.e. decreasing the number of the candidate models) might be a
remedy.

The above considerations led to an experimental examination of a more restricted version of the
F-strategy: While the J sets of the mixed models corresponding to the dashed lines in Fig. 1 could
contain up to 9 subjects, the solid lines were obtained when the size limit for J was set to 3 and,
moreover, the grid of allowed α values was reduced from 0–1 by 0.5 to 0–0.5 by 0.1.

The search restriction was fully successful in the 3-class problem where the model deterioration
vanished, and the the resulting models appear uniformly better than the original ones (Fig. 1a). As
regards the Mentation vs. Wakefulness problem (Fig. 1b), the trend of model deterioration was atten-
uated markedly, but is still present. In the two remaining classification problems, where the original
F-models did not call much for corrections, the effect of search restriction was negative (Somnolence
vs. Wakefulness problem, Fig. 1c), or negligible (Somnolence vs. Mentation problem, Fig. 1d).

Fig. 2 shows additional experimental results for the Mentation vs. Wakefulness problem. Further
reduction of the size limit for set J from 3 to 2 and 1 (while keeping the limitations concerning α) has
led to a further attenuation of the increase of mean errors with growing forest size but, at the same
time, to less accurate classifiers. In the earlier study, one model search strategy, namely the strategy
based on a single “well-guessed” candidate set J (for details, see Klaschka (2008)), did markedly better
than the F-strategy for the Mentation vs. Wakefulness problem. (Nothing like that happened for the
other 3 problems.) The same remains true even when the forest size is varied – see the lowest line
in Fig. 2. The corresponding curve is uniformly satisfactorily low, and does not increase with the
growing forest size.
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Figure 1. Overall errors (means ± 2SE of 50 repetitions) of the individual models, orig-

inal F-models (legend |J | ≤ 9) and F-models resulting from restricted search (|J | ≤ 3) for

8 different forest sizes (1k = 1 000 etc.).

6. Conclusions

The hypothesis that combining forests into mixed models is the more prone to overfit, the bigger
are the forests, remains still just one of possible explanations of the phenomena studied in Section 5.
The experimental results, nevertheless, seem to support it. Moreover, even if it is true, it is still
unclear, whether its validity is a specific of the given domain, or more general.

As shown in Fig. 2, the search restriction, though successful in some cases, should be applied with
care, and by no means is a universal way to the optimal classification results. It cannot compensate for
good candidate models “overlooked” by a given type of search strategy (see the case of J fixed), and
it may rather, when overdone, do harm by eliminating most of promising candidates (case |J | ≤ 1).

As regards fine tuning of the F-strategy, search restriction is advisable for 3 of the 4 tasks, but
not for the Somnolence vs. Wakefulness problem. Forest size up to 1 000 is enough for the Mentation
vs. Wakefulness and Somnolence vs. Mentation problems. For the other two problems, it remains
open whether the error decrease with the forest size growth is worth the increased computational cost.
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Figure 2. Further results for the Mentation vs. Wakefulness problem. Overall errors

(means ± 2SE of 50 repetitions) of the individual models, F-models resulting from re-

stricted search with size limit for set J reduced to 3, 2, and 1, and a mixed model with

a fixed set J, all for 8 different forest sizes (1k = 1 000 etc.).
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