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In the past two decades, following the work of Lam (1990), there has been a growing literature

on the development of Bayesian variable sampling plans for the exponential distribution based on

different types of data including Type-I, Type-II, and random censoring; see Lin et al. (2008a) and

the references contained therein. Recently, Chen et al. (2004) and Lin et al. (2008b, 2010) discussed

the Bayesian variable sampling plans for exponential lifetime distribution under mixed or ordinary

hybrid censoring, and progressive hybrid censoring schemes.

In the Type-I case, there are two ways to approach the optimal Bayesian plan, one is to condition

on at least one failure in order for the MLE to exist (see Lin et al. 2008a, 2008b, 2010), and the other

one is not to condition on that event and use an ad hoc estimate of the parameter when no failure

occurs since the MLE does not exist in this case (see Lam 1994). Using the former approach and

simulated optimization algorithm, Lin et al. (2010) pointed out that the minimum Bayes risks (MBR)

under Type-I censoring, Type-I hybrid censoring, or Type-I progressive hybrid censoring are the same

when the time-consuming cost and salvage are not included in the loss function. It is important to

note that in over 56% of the selected cases in Table 1 of Lin et al. (2010), the values of MBR based

on the former approach are always smaller than those based on the Lam’s approach (with relative

efficiencies in the range of 99.3–100%); but, the former approach is not uniformly better in that the

efficiencies in some cases is slightly above 100% (with the highest value achieved being 100.2%).

Comparatively, employing the same techniques with the exact distribution of the MLE, the

analogous conclusion does not occur in the Type-II case in that the progressive hybrid censoring plans

are generally more efficient followed by ordinary hybrid censoring plans and then plans of Lam (1990)

in terms of efficiencies. Thus, it is of great interest to use the same procedure to investigate the optimal

sampling plans from an exponential distribution under both types of the adaptive progressive hybrid

censoring schemes (APHCS) when a general loss function given in Eq. (1) below, which includes the

sampling cost, the time-consuming cost, and the salvage, is used, and also to compare their performance

with those of progressive hybrid censoring scheme (PHCS). An overview of these progressive hybrid

censoring schemes and the related inferential methods can be found in Huang (2010).

Bayes Risk

Suppose that a lot of N items are presented for acceptance sampling and a sample of size n is

taken from the lot. Given λ, the probability density functions of the maximum likelihood estimator

(MLE) of the average lifetime θ = 1/λ from an exponential distribution with pdf f(x) = λe−λx for

x > 0 and λ > 0 under (Type-I and Type-II) PHCS and APHCS (which are denoted by fθ̂(x)) are
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all linear combination of gamma distributions (see Lin et al., 2010, Huang, 2010). The larger θ, the

larger expected lifetime. Thus, it is reasonable to reject a batch if θ̂ is small. It then leads to the

following one-sided decision function:

δ(X) =

{
1, θ̂ ≥ ξ,

0, otherwise,

where X is the resulting failure times and δ(X) = 1 and 0 represent the decisions of accepting and

rejecting the batch, respectively.

Let C1 be the cost for inspecting an item, C2 be the salvage incurred by an unfailed item in the

inspection, C3 be the cost per unit time used for life test, C4 be the loss of rejecting the batch, C5ϕ(λ)

be the loss of accepting the batch, where C5 = (1−n/N). Assuming that C1, . . . , C5 are non-negative,

C1 > C2 ≥ 0, and ϕ(λ) = a0+a1λ+ · · ·+akλ
k is a positive and non-decreasing function of λ for λ ≥ 0.

Noting that the loss of accepting or rejecting the batch without sampling is often greater than one can

afford in many applications, therefore, our study will not include these two extreme cases. Combining

all the losses and salvage, the loss function for the sampling plan S(n,m, (R1, . . . , Rm), T, ξ), is usually

defined as:

l(δ(X), λ) = C1n− C2(n−m∗) + C3τ + (1− δ(X))C4 + δ(X)C5ϕ(λ),(1)

where

(m∗, τ) =


(D,T ) for Type-I APHCS,

(m,Xm:m:n) for Type-II APHCS,

(min{m,D},min{Xm:m:n, T}) for Type-I PHCS,

(max{m,D},max{Xm:m:n, T}) for Type-II PHCS.

Then, by assuming that the scale parameter λ has a conjugate gamma prior with density function

h(λ; a, b) =
ba

Γ(a)
λa−1e−λb, λ > 0,(2)

and ϕ(λ) is of order k = 2 for the purpose of illustration, the Bayes risk for δ(X) is given by

R(n,m,R1, · · · , Rm, T, ξ) = E[l(δ(X), λ)] = Eλ{EX |λ[l(δ(X), λ, n)|λ]}
= (C1 − C2)n+ C2EλEX |λ[m

∗|λ] + C5(a0 + a1µ1 + a2µ2)

+C3EλEX |λ[τ |λ] +
2∑

ℓ=0

C∗
ℓ

ba

Γ(a)

∫ ∞

0

∫ ξ

0
λa+ℓ−1e−λbfθ̂(x)dxdλ,

where µ1 and µ2 are the first and second moments of λ about 0 and

C∗
ℓ =

{
C4 − C5a0, ℓ = 0,

−C5aℓ, otherwise.

According to the selected progressive hybrid censoring scheme, EλEX |λ[m
∗|λ], EλEX |λ[τ |λ],

and
∫∞
0

∫ ξ
0 λa+ℓ−1e−λbfθ̂(x)dxdλ can be easily determined. For instance, under Type-II APHCS, we

can follow from the Eqs. (5) and (7) of Ng et al. (2009) and the identity

Eλ(λ
ϑe−λρT ) =

ba

Γ(a)

∫ ∞

0
λa+ϑ−1e−λ(b+ρT )dλ =

ba

Γ(a)

Γ(a+ ϑ)

(b+ ρT )a+ϑ

to obtain the expression of EλEX |λ[Xm:m:n|λ] for a > 1, and then from the Lemma 1 of Lin et al.

(2010) with fθ̂(x) in Eq. (2.10) of Huang (2010) to have∫ ∞

0

∫ ξ

0
λa+ℓ−1e−λbfθ̂(x)dxdλ =

m∑
d=0

d∑
k=0

cm · ck,d(R1 + 1, . . . , Rd + 1)∏m−d
k=1 (k +

∑m
i=d+1Ri)

Aγd−k+1,m,0,
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where cm =
∏m

i=1 γi with γi =
∑m

k=i(Rk + 1), ci,r(α1, . . . , αr) = (−1)i{∏i

j=1

∑r−i+j

k=r−i+1
αk

}{∏r−i

j=1

∑r−i

k=j
αk

} ,
and Aζ,η,κ = Γ(a+ℓ)

(b+κT+ζT )a+ℓ ISζ,η,κ
(η, a + ℓ). Here Sζ,η,κ = ηξ−ζT

b+κT+ηξ and Ix(α, β) =
Bx(α,β)
B(α,β) is the distri-

bution function of beta (α, β) distribution with Bx(α, β) =
∫ x
0 tα−1(1− t)β−1dt being the incomplete

beta function for 0 ≤ x ≤ 1. Combining these two results as well as EλEX |λ[m
∗] = m, we thus

have the explicit expression for the Bayes risk of a sampling plan S(n,m, (R1, . . . , Rm), T, ξ) under

Type-II APHCS. Analogously, the explicit expressions for the Bayes risks of the sampling plans under

other three progressive hybrid censoring schemes can be derived; see Huang (2010) for the detailed

derivations.

Algorithm and Numerical Results

Denote the set of feasible values of (n,m, (R1, . . . , Rm), T, ξ) by G. The optimal sampling plan

S(no,mo, (Ro
1, . . . , R

o
m), T o, ξo) is the one that minimizes the Bayes risk R(n,m, (R1, . . ., Rm), T, ξ) =

E[l(δ(X), λ)] for (n,m, (R1, . . . , Rm), T, ξ) ∈ G. Thus, the steps for finding an optimal sampling plan

in a class of possible sampling plans are as follows:

(a) set n∗ = n = 1 and m∗ = m = 1. Find optimal T and ξ, say T ∗ and ξ∗, to minimize

R(1, 1, (0), T, ξ). Set RS ≡ R(1, 1, (0), T ∗, ξ∗).

(b) If n∗ violates the condition given in Eq. (3) below, go to step d.

(c) Set n = n + 1. For m = 1, . . . , n and all possible choices of (R1, . . . , Rm), find optimal T

and ξ, say T ′ and ξ′, to minimize R(n,m, (R1, . . . , Rm), T, ξ). If R(n,m, (R1, . . . , Rm), T ′,

ξ′) < RS , set n∗ = n, m∗ = m, T ∗ = T ′, ξ∗ = ξ′, (R∗
1, . . . , R

∗
m) = (R1, . . . , Rm), and

RS = R(n,m, (R1, . . . , Rm), T ′, ξ′). Go to step b.

(d) S(no,mo, Ro
1, . . . , R

o
m, T o, ξo) is the optimal sampling plan with n∗ = n, m∗ = m, T ∗ = T ′,

ξ∗ = ξ′, and (R∗
1, . . . , R

∗
m) = (R1, . . . , Rm).

This algorithm is finite, that is, we can find an optimal sampling plan in a finite number of

steps in the search. It is true in view of the facts that, for n ≥ 1, R(no,mo, (Ro
1, . . . , R

o
m), T o, ξo) ≤

R(n,m, (R1, . . . , Rm), Tn, ξn), whereR(n,m, (R1, . . . , Rm), Tn, ξn) = min
T,ξ

{R(n,m, (R1, . . . , Rm), T, ξ)},

and, from the definition of the loss function in Eq. (1), R(no,mo, (Ro
1, . . . , R

o
m), T o, ξo) ≥ no(C1−C2).

Thus, the optimal sample size no satisfies the condition: for n ≥ 1,

no ≤ R(n,m, (R1, . . . , Rm), Tn, ξn)

C1 − C2
.(3)

Since the expression of R(n,m, (R1, . . . , Rm), T, ξ) is very complicated, the regular numerical

optimizations such as Newton-Gauss and steepest descent methods are not applicable; hence, a sim-

ulated annealing algorithm (see Lin et al. 2010) is employed for the determination of an optimal

sampling plan in our numerical examples below.

By setting a = 1.5, b = 2.0, a0 = 1.0, a1 = 1.0, a2 = 1.0, N = 1000, C1 = 1.0, C2 = 0.5,

C3 = 2.0 and C4 = 5.0 as the true values of the parameters and coefficients in the model (which we

refer as the original setting), the optimal sampling plan is S(4, 1, (3), 18.0196, 0.017) under Type-II

APHCS with Bayes risk being 7.1844; and is S(1, 1, (0), 21.3921, 0.0170) under Type-II PHCS with

Bayes risk being 7.1011. Thus, the relative efficiency of the plan under Type-II PHCS to the plan

under Type-II APHCS (Eff2) can be computed as 7.1011/7.1844 = 98.8%, which indicates that the

difference between these two schemes is negligible.

In many situations, the parameters and coefficients are not known in advance. They may be

estimated or be assigned subjectively by experimenters. Thus, there is a need to investigate how the
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change in efficiency for each censoring scheme when one of the selected parameters or coefficients used

in the model has been misspecified. To demonstrate the analysis, we conduct a sensitivity analysis

study with parameters a and b, and coefficients a2, C3, and C4, respectively. The results are presented

in Table 1. The efficiency reported as Eff1 is the ratio of the MBR, R(no,mo, (Ro
1, . . . , R

o
m), T o, ξo),

under the original setting and the one under the setting with one misspecified parameter or coefficient.

It is easily seen that, the values of Eff1 in over 63% (19/30) cases under Type-II APHCS are in the

range of 85–115%; but, this does not occur consistently in that the efficiencies in some cases are below

32% or above 190% if one of the parameters or coefficients are chosen incorrectly. In contrast, there are

about 37% (11/30) of the selected cases under Type-II PHCS that the efficiencies are in the range of

85–115% (with the lowest and the highest values achieved being 36.8% and 497.6%). It shows that the

proposed optimal sampling plans under Type-II APHCS are generally much more robust than those

under Type-II PHCS with regard to changes in the parameters and coefficients used in the model.

It is also important to compare the proposed sampling plans based on these two schemes. As

expected, the values of MBR under Type-II PHCS except the case C3 = 0 are all smaller than those

under Type-II APHCS. However, among the 11 robust cases, the values of Eff2 are in the range of

82.2–99.6%, which suggests that there is approximately no difference in efficiency between these two

schemes.

Given that D ≥ 1, similar results in terms of robustness and efficiency can also be observed in

the Type-I case, as seen in Table 2. In general, the optimal sampling plans under Type-I APHCS are

more robust than those under Type-I PHCS; and, from the settings of these two schemes, the relative

efficiencies of the plans under Type-I PHCS to those under Type-I APHCS are often significantly

larger than 115%. On the whole, we can conclude that for exponential distribution, the plans under

APHCS, especially in the Type-I case, are generally more robust and efficient than those based on

PHCS when a general loss function is used.
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Table 1: The MBRs and optimal sampling plans for some selected values of a, b, a2, C3

and C4 under APHCS and PHCS in the Type-II case

a b a2 C3 C4 Scheme no mo (Ro
1, · · · , R

o
m) To ξo MBR Eff1(%) Eff2(%)

1.5 2.0 1.0 2.0 5.0 APHCS 4 1 (3) 18.0196 0.0170 7.1844

PHCS 1 1 (0) 21.3921 0.0170 7.1011 98.8

2.0 APHCS 3 1 (2) 4.4317 0.1506 6.7917 105.8

PHCS 1 1 (0) 10.6491 0.1506 5.6288 126.2

2.5 APHCS 2 1 (1) 3.5540 0.4657 6.9126 103.9

PHCS 1 1 (0) 6.7469 0.4676 5.7103 124.4

3.0 APHCS 2 1 (1) 0.7569 0.7870 6.9878 102.8

PHCS 3 2 (0,1) 0.0169 0.7131 3.4059 208.5

3.5 APHCS 2 1 (1) 0.2151 1.1080 7.0326 102.2

PHCS 2 1 (1) 0.0145 1.1080 5.3031 133.9

4.0 APHCS 2 1 (1) 1.7355 1.4288 7.0347 102.1

PHCS 2 1 (1) 0.0127 1.4286 4.2075 168.8

5.0 APHCS 2 1 (1) 0.0674 2.0698 6.9722 103.0

PHCS 2 1 (1) 0.0102 2.0700 1.4270 497.6

1.5 0.8 APHCS 3 1 (2) 7.0134 1.0200 7.4685 96.2

PHCS 2 1 (1) 0.0136 1.0215 3.7891 187.4

1.0 APHCS 3 1 (2) 6.1897 0.8201 7.4974 95.8

PHCS 2 1 (1) 0.0170 0.8214 5.9307 119.7

3.0 APHCS 3 1 (2) 17.3696 0.0255 7.9389 90.5

PHCS 3 1 (2) 0.2330 0.0355 7.8989 89.9 99.5

4.0 APHCS 3 1 (2) 6.4334 0.0340 8.9738 80.1

PHCS 3 1 (2) 0.3698 0.0340 8.9125 79.7

5.0 APHCS 2 1 (1) 50.1664 0.0426 12.9870 55.3

PHCS 1 1 (0) 53.4804 0.0426 11.0105 64.5

10.0 APHCS 2 1 (1) 14.3119 0.0851 22.7314 31.6

PHCS 1 1 (0) 106.9607 0.0851 19.2767 36.8

2.0 2.0 APHCS 4 1 (3) 8.0285 0.4204 7.9139 90.8

PHCS 4 3 (2*0,1) 0.0340 0.7043 6.5036 109.2 82.2

2.5 APHCS 4 1 (3) 18.0813 0.6642 8.1161 88.5

PHCS 3 1 (2) 0.0340 0.6661 7.7033 92.2 94.9

3.0 APHCS 4 1 (3) 15.4680 0.8851 8.2648 86.9

PHCS 3 1 (2) 0.0340 0.8870 7.3637 96.4 89.1

5.0 APHCS 4 1 (3) 0.7582 1.6245 8.6104 83.4

PHCS 3 2 (0,1) 0.0340 1.4430 2.4687 287.6

7.5 APHCS 4 1 (3) 9.0591 2.3632 8.8203 81.5

PHCS 2 1 (1) 0.0340 2.3691 6.0193 118.0

10.0 APHCS 4 1 (3) 8.4516 2.9867 8.9406 80.4

PHCS 2 1 (1) 0.0340 2.9934 4.1788 169.9

1.0 0.0 APHCS 1 1 (0) 15.0155 0.0170 3.6923 194.6

PHCS 1 1 (0) 0.4800 0.0170 3.6923 192.3

1.0 APHCS 3 1 (2) 6.9000 0.0170 6.0203 119.3

PHCS 5 4 (3*0,1) 0.0340 0.4352 3.9550 179.5

3.0 APHCS 5 1 (4) 4.0155 0.0170 8.0817 88.9

PHCS 5 1 (4) 0.0771 0.2443 8.0489 88.2 99.6

4.0 APHCS 5 1 (4) 18.5816 0.0170 8.8817 80.9

PHCS 5 1 (4) 0.0850 0.2801 8.8437 80.3

5.0 APHCS 5 1 (4) 14.6429 0.0170 9.6817 74.2

PHCS 5 1 (4) 0.0857 0.2407 9.6375 73.7

10.0 APHCS 5 1 (4) 16.9107 0.0170 13.6817 52.5

PHCS 5 1 (4) 0.1153 0.2292 13.6034 52.2

2.0 10.0 APHCS 4 1 (3) 11.3484 0.0170 7.2475 99.1

PHCS 1 1 (0) 21.3921 0.0170 7.1643 99.1 98.9

15.0 APHCS 4 1 (3) 4.5194 0.0170 7.3107 98.3

PHCS 4 1 (3) 0.0340 0.0170 7.1770 98.9 98.2

20.0 APHCS 4 1 (3) 5.9694 0.0170 7.3739 97.4

PHCS 4 1 (3) 0.0340 0.0170 7.1771 98.9 97.3

30.0 APHCS 4 1 (3) 1.0250 0.0170 7.5002 95.8

PHCS 4 1 (3) 0.0340 0.0170 7.1771 98.9 95.7

50.0 APHCS 4 1 (3) 15.3002 0.0170 7.7528 92.7

PHCS 4 1 (3) 0.0353 0.0170 7.1773 98.9 92.6

100.0 APHCS 4 1 (3) 15.1794 0.0170 8.3844 85.7

PHCS 4 1 (3) 0.0391 0.0170 7.1775 98.9 85.6
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Table2: The MBRs and optimal sampling plans for some selected values of a, b, a2, C3

and C4 under APHCS and PHCS in the Type-I case

a b a2 C3 C4 Scheme no mo (Ro
1, · · · , R

o
m) To ξo MBR Eff1(%) Eff2(%)

1.5 2.0 1.0 2.0 5.0 APHCS 2 1 (1) 0.0340 0.0170 3.7787

PHCS 1 1 (0) 21.3863 0.0170 4.8883 129.4

2.0 APHCS 1 1 (0) 0.0888 0.0127 4.4285 85.3

PHCS 1 1 (0) 10.6490 0.1382 5.5777 87.6 126.0

2.5 APHCS 1 1 (0) 0.0478 0.0102 5.1695 73.1

PHCS 1 1 (0) 6.7469 0.4520 6.1278 79.8 118.5

3.0 APHCS 1 1 (0) 0.0169 0.1713 5.5387 68.2

PHCS 2 2 (2*0) 4.8399 0.7133 1.6097 303.7 29.1

3.5 APHCS 1 1 (0) 0.0145 0.6335 5.5112 68.6

PHCS 3 3 (3*0) 3.7380 0.7954 2.7403 178.4 49.7

4.0 APHCS 1 1 (0) 0.0127 0.2589 5.5379 68.2

PHCS 5 5 (5*0) 3.0297 0.7955 3.1813 153.7 57.4

5.0 APHCS 1 1 (0) 0.0102 0.1489 5.5186 68.5

PHCS 10 10 (10*0) 2.1826 0.7848 6.0897 80.7 110.3

1.5 0.8 APHCS 1 1 (0) 0.0136 4.7503 5.5397 68.2

PHCS 1 1 (0) 8.5569 1.0041 6.3410 77.1 114.5

1.0 APHCS 1 1 (0) 0.0170 0.4695 5.5463 68.1

PHCS 1 1 (0) 10.6961 0.8110 6.1741 79.2 111.3

3.0 APHCS 2 1 (1) 0.0511 0.0255 3.0255 124.9

PHCS 1 1 (0) 32.0771 0.0255 4.2257 115.7 139.7

4.0 APHCS 2 1 (1) 0.0681 0.0340 2.7856 135.7

PHCS 1 1 (0) 42.7705 0.0340 3.9752 123.0 142.7

5.0 APHCS 2 1 (1) 0.0851 0.0426 2.6627 141.9

PHCS 1 1 (0) 53.4770 0.0426 3.8508 126.9 144.6

10.0 APHCS 2 1 (1) 0.1702 0.0851 2.5743 146.8

PHCS 1 1 (0) 106.9455 0.0851 3.6609 133.5 142.2

2.0 2.0 APHCS 1 1 (0) 0.1008 0.0170 4.5823 82.5

PHCS 1 1 (0) 21.3921 0.4194 5.6199 87.0 122.6

2.5 APHCS 1 1 (0) 0.0823 0.0170 4.9578 76.2

PHCS 1 1 (0) 21.3921 0.6614 5.8232 83.9 117.5

3.0 APHCS 1 1 (0) 0.0582 0.0170 5.3073 71.2

PHCS 1 1 (0) 21.3921 0.8805 5.9730 81.8 112.5

5.0 APHCS 1 1 (0) 0.0340 6.1106 5.5806 67.7

PHCS 1 1 (0) 21.3921 1.6101 6.3228 77.3 113.3

7.5 APHCS 1 1 (0) 0.0340 6.3531 5.5806 67.7

PHCS 1 1 (0) 21.3921 2.3341 6.5370 74.8 117.1

10.0 APHCS 1 1 (0) 0.0340 6.1438 5.5806 67.7

PHCS 1 1 (0) 21.3921 2.9403 6.6609 73.4 119.4

1.0 0.0 APHCS 1 1 (0) 0.4109 0.0170 3.4057 111.0

PHCS 4 4 (4*0) 21.3921 0.4359 2.2717 215.2 66.7

1.0 APHCS 1 1 (0) 0.1738 0.0170 3.6471 103.6

PHCS 1 1 (0) 21.3863 0.0170 4.1543 117.7 113.9

3.0 APHCS 2 1 (1) 0.0340 0.0170 3.8128 99.1

PHCS 1 1 (0) 21.3863 0.0170 5.6223 86.9 147.5

4.0 APHCS 2 1 (1) 0.0340 0.0170 3.8468 98.2

PHCS 1 1 (0) 21.3863 0.0170 6.3563 76.9 165.2

5.0 APHCS 2 1 (1) 0.0340 0.0170 3.8808 97.4

PHCS 1 1 (0) 21.3863 0.0170 7.0903 68.9 182.7

10.0 APHCS 2 1 (1) 0.0340 0.0170 4.0511 93.3

PHCS 1 1 (0) 21.3863 0.0170 10.7604 45.4 265.6

2.0 10.0 APHCS 2 2 (2*0) 0.0340 0.0170 3.8111 99.1

PHCS 1 1 (0) 21.3919 0.0170 4.9516 98.7 129.9

15.0 APHCS 2 1 (1) 0.0340 0.0170 3.8434 98.3

PHCS 1 1 (0) 21.3920 0.0170 5.0150 97.5 130.5

20.0 APHCS 2 1 (1) 0.0348 0.0170 3.8757 97.5

PHCS 1 1 (0) 21.3915 0.0170 5.0783 96.3 131.0

30.0 APHCS 2 1 (1) 0.0447 0.0170 3.9316 96.1

PHCS 1 1 (0) 21.3916 0.0170 5.2050 93.9 132.4

50.0 APHCS 2 1 (1) 0.0597 0.0170 4.0179 94.0

PHCS 1 1 (0) 21.3921 0.0170 5.4584 89.6 135.9

100.0 APHCS 2 1 (1) 0.0867 0.0170 4.1758 90.5

PHCS 1 1 (0) 21.3921 0.0170 6.0919 80.2 145.9
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