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Introduction

In classical data analysis, each individual takes one single “value” on each descriptive variable.
Symbolic Data Analysis ([Bock and Diday (2000)], [Billard and Diday (2007)]) generalizes this frame-
work by allowing each individual or class of individuals to take a finite set of values (quantitative multi-
valued variables), a finite set of categories (qualitative multi-valued variables), an interval (interval-
valued variable) or a distribution on each variable (modal-valued variables). A special case of these
latter is when the distribution, for all observations of the modal-valued variable, is given by depicting
the probabilities/ frequencies of observations occurring in certain ranges of values - we say then that
we are in presence of a histogram-valued variable. Interval-valued variables may be seen as a particular
case of the histogram-valued variables if for all observations we have only one interval with proba-
bility/frequency one. The variable Y is a random histogram-valued variable if to each observation j,

Y (j) corresponds a probability or frequency distribution that can be represented by the histogram
([Bock and Diday (2000)]):

HY (j) =
{[

IY (j)1 , IY (j)1

[
, pj1;

[
IY (j)2 , IY (j)2

[
, pj2; . . . ;

[
IY (j)nj

, IY (j)nj

]
, pjnj

}
(1)

where pji is the probability or frequency associated to the sub-interval
[
IY (j)i

, IY (j)i

[
with

i ∈ {1, 2, . . . , nj} , nj is the number of sub-intervals for the jth observation,
nj∑
i=1

pji = 1, IY (j)i
≤ IY (j)i

and IY (j)i+1
≤ IY (j)i

.

It is assumed that within each sub-interval
[
IY (j)i

, IY (j)i

[
the values for the variable Y for the

observation j, are uniformly distributed. For different observations, the number of sub-intervals of the
histogram-valued variable may be different.

For each observation j, Y (j) can, alternatively, be represented by the inverse cumulative distri-
bution function also called quantile function Ψ−1

Y (j) ([Irpino and Verde (2006)]). This function is given
by

Ψ−1
Y (j)(t) =



IY (j)1 + t
wj1

aY (j)1 if 0 ≤ t < wj1

IY (j)2 + t−wj1

wj2−wj1
aY (j)2 if wj1 ≤ t < wj2

...

IY (j)n
+

t−wjnj−1

1−wjnj−1
aY (j)nj

if wjnj−1 ≤ t ≤ 1

(2)
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where wjl =


0 if l = 0

l∑
h=1

pjh if l = 1, . . . , nj
; aY (j)i

= IY (j)i
− IY (j)i

with i = {1, . . . , nj} and nj is

the number of sub-intervals in Y (j).
Every time we use the term “distribution” we are considering a probability or frequency distri-

bution of data of a continuous variable that can be represented by a histogram or a quantile function.
In recent years, some concepts and statistical methods for symbolic variables and in particular

for histogram-valued variables were defined ([Billard and Diday (2007)]). Frequently, methods for
these variables are a generalization of their counterparts for interval-valued variables.

Linear Regression Model

In 2000, Billard and Diday ([Billard and Diday (2000)]) proposed the first linear regression
model for interval-valued variables and later expanded their work to histogram-valued variables
([Billard and Diday (2002)]). For interval-valued variables, several models had already been proposed
and compared ([Billard and Diday (2002)], [Neto and Carvalho (2008)], [Neto and Carvalho (2010)]).
However, these models present some limitations: firstly, all they are based on differences
between real values and do not appropriately quantify the closeness between intervals; then, the
elements estimated by the models may fail to build an interval; for this reason, the most recent model
imposes non-negativity constraints on the coefficients, therefore forcing a direct linear relationship.

Although interval-valued variables are a particular case of the histogram-valued variables, the
limitations of the models proposed for interval-valued variables prevent their generalization to histogram-
valued variables; therefore alternative models should be developed ([Irpino and Verde (2010)]). The
model that we will next propose for histogram-valued variables is also not a generalization, but the
analysis of the limitations present in the models for interval-valued variables has allowed to establish
the goals for the model that we define here, as follows: finding an error measure to quantify the
difference between the observed and estimated distributions represented by histograms or quantile
functions; defining a linear regression model for histogram-valued variables that allows the estimation
of histograms or their quantile functions from other histograms or quantile functions, without forcing
a direct linear relationship, and measuring the goodness-of-fit of the model.

To quantify the difference between the observed and estimated distributions that can be
represented by histograms or quantile functions, we consider the work of Arroyo and Maté
([Arroyo and Maté (2009)]). In their work on forecasting time series, applied to histogram-valued
variables, they used the Mallows and Wasserstein distances to measure the error between the ob-
served and forecasted distributions. In using the Wasserstein and Mallows distances, the values that
the histogram-valued variables take are represented by their quantile functions and not by their his-
tograms. Given two quantile functions Ψ−1

X(j) and Ψ−1
Y (j) that represent the distributions that the

histogram-valued variables X and Y take for observation j, the Wasserstein distance is defined as

DW (Ψ−1
X(j),Ψ

−1
Y (j)) =

∫ 1

0

∣∣∣Ψ−1
X(j)(t)−Ψ−1

Y (j)(t)
∣∣∣ dt(3)

and the Mallows distance as

DM (Ψ−1
X(j),Ψ

−1
Y (j)) =

√∫ 1

0
(Ψ−1

X(j)(t)−Ψ−1
Y (j)(t))

2dt(4)

For Arroyo and Maté ([Arroyo and Maté (2009)]), these distances are a good measure to analyze
the similarity between two distributions. Other works for histogram-valued variables also used these
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measures ([Irpino and Verde (2006)]). Therefore, it seems appropriate to choose the Mallows distance
to measure the similarity between the observed and the estimated distributions obtained by the linear
regression model.

Consider, for each observation j, the quantile function Ψ−1
Y (j), that represents the observed

distribution of the histogram-valued variable and the quantile function Ψ−1

Ŷ (j)
, that represents the

estimated distribution of the histogram-valued variable. For observation j, the error between Y (j)
and Ŷ (j) is given by

SE(j) = D2
M (Ψ−1

Y (j),Ψ
−1

Ŷ (j)
)(5)

and the total error is

SE =
m∑

j=1

D2
M (Ψ−1

Y (j),Ψ
−1

Ŷ (j)
)(6)

The Mallows distance can be rewritten using the center and half-range of the sub-intervals of the
histograms ([Irpino and Verde (2006)]). So, the error between the distributions that the histogram-
valued variables Y and Ŷ take, can be defined as follows:

SE =
m∑

j=1

n∑
i=1

pji

[
(cY (j)i

− c
Ŷ (j)i

)2 +
1
3
(rY (j)i

− r
Ŷ (j)i

)2
]

(7)

where cY (j)i
=

IY (j)i
+IY (j)i
2 ; c

Ŷ (j)i
=

I
Ŷ (j)i

+I
Ŷ (j)i

2 ; and rY (j)i
=

IY (j)i
−IY (j)i
2 ; r

Ŷ (j)i
=

I
Ŷ (j)i

−I
Ŷ (j)i

2 .

The first option to define the functional linear relation between the observations of the histogram-
valued variables was to adapt directly the classical linear regression model:

Ψ−1

Ŷ (j)
(t) = γ + α1Ψ−1

X1(j)(t) + α2Ψ−1
X2(j)(t) + . . . + αpΨ−1

Xp(j)(t).(8)

The distributions taken by the histogram-valued variables are represented by their quantile
functions, because this is the representation used by the error measure. However, in this model it
is also necessary to impose non-negativity constraints on the parameters since quantile functions are
necessarily non-decreasing functions. Although we did not generalize the model for interval-valued
variables to histogram-valued variables, in defining a model that allows to estimate a quantile function
from other quantile functions, we obtain a model with the same limitations as observed before.

To resolve this limitation, we introduce in the above model both the quantile functions that repre-
sent the distributions that the independent histogram-valued variables take, Ψ−1

X1(j),Ψ
−1
X1(j), . . . ,Ψ

−1
Xp(j)

and the quantile functions that represent the distributions that the respective symmetric histogram-
valued variables take, Ψ−1

X̃1(j)
,Ψ−1

X̃1(j)
, . . . ,Ψ−1

X̃p(j)
. The estimated quantile function Ψ−1

Ŷ (j)
, is then given

by:

Ψ−1

Ŷ (j)
(t) = γ+α1Ψ−1

X1(j)(t)+β1Ψ−1

X̃1(j)
(t)+α2Ψ−1

X2(j)(t)+β2Ψ−1

X̃2(j)
(t)+. . .+αpΨ−1

Xp(j)(t)+βpΨ−1

X̃p(j)
(t).(9)

with αk, βk ≥ 0, k = {1, 2, . . . , p} and γ ∈ IR.

In this model, restrictions on the parameters are imposed, but in this case it does not imply
a direct linear relationship because the model includes both the quantile functions that represent
the distributions taken by the histogram-valued variables and the quantile functions that represent
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the distributions taken by the respective symmetric histogram-valued variables. Estimation of the
model requires solving a quadratic optimization problem, subject to non-negativity constraints on the
unknowns and use the Mallows distance. The parameters of the model are an optimal solution of the
minimization problem:

Minimize SE =
m∑

j=1

D2
M (Ψ−1

Y (j),Ψ
−1

Ŷ (j)
)(10)

with αk, βk ≥ 0, k = {1, 2, . . . , p} and γ ∈ IR.

Similarly to the classical model, the Kuhn Tucker optimality conditions ([Winston (1994)]) allow
defining a measure to evaluate the goodness-of-fit of the model. This is given by

Ω =

m∑
j=1

D2
M

(
Ψ−1

Ŷ (j)
(t), Y

)
m∑

j=1

D2
M

(
Ψ−1

Y (j)(t), Y
) ,(11)

where Y = 1
m

m∑
j=1

(
n∑

i=1

(
IY (j)i

+ IY (j)i

2

)
pji

)
.

It is straigtforward to prove that the goodness-of-fit measure Ω also ranges from 0 to 1.

Application

To illustrate the proposed linear regression model, we choose the example presented by Billard
and Diday ([Billard and Diday (2007)]) in their linear regression model for histogram-valued variables.
In this case, the hematocrit values and hemoglobin values are represented as histogram-valued data
for each of 10 observations.

Observations Hematocrit(Y ) Hemoglobin(X)
1 {[33.29; 37.52[ , 0.6; [37.52; 39.61] , 0.4} {[11.54; 12.19[ , 0.4; [12.19; 12.8] , 0.6}
2 {[36.69; 39.11[ , 0.3; [39.11; 45.12] , 0.7} {[12.07; 13.32[ , 0.5; [13.32; 14.17] , 0.5}
3 {[36.69; 42.64[ , 0.5; [42.64; 48.68] , 0.5} {[12.38; 14.2[ , 0.3; [14.2; 16.16] , 0.7}
4 {[36.38; 40.87[ , 0.4; [40.87; 47.41] , 0.6} {[12.38; 14.26[ , 0.5; [14.26; 15.29] , 0.5}
5 {[39.19; 50.86] , 1} {[13.58; 14.28[ , 0.3; [14.28; 16.24] , 0.7}
6 {[39.7; 44.32[ , 0.4; [44.32; 47.24] , 0.6} {[13.81; 14.5[ , 0.4; [14.5; 15.2] , 0.6}
7 {[41.56; 46.65[ , 0.6; [46.65; 48.81] , 0.4} {[14.34; 14.81[ , 0.5; [14.81; 15.55] , 0.5}
8 {[38.4; 42.93[ , 0.7; [42.93; 45.22] , 0.3} {[13.27; 14.0[ , 0.6; [14.0; 14.6] , 0.4}
9 {[28.83; 35.55[ , 0.5; [35.55; 41.98] , 0.5} {[9.92; 11.98[ , 0.4; [11.98; 13.8] , 0.6}
10 {[44.48; 52.53] , 1} {[15.37; 15.78[ , 0.3; [15.78; 16.75] , 0.7}

Table 1: Example of dataset with two histogram-valued variables
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We estimated the quantile function representing the distribution taken by the histogram-valued
variable Y from the model, and obtained:

Ψ−1

Ŷ (j)
(t) = −1, 953 + 3, 5598Ψ−1

X(j)(t) + 0, 4128Ψ−1

X̃(j)
(t)

The goodness-of-fit measure is, for this case, Ω = 0, 96.

In Figure 1 we can see that the estimated and observed quantile functions for each observation
are very similar, in agreement with the value of the coefficient of determination, Ω.

Figure 1: Observed and estimated quantile functions of each observation

Conclusion

With the linear regression model proposed it is possible to estimate the quantile functions that
represent the distributions taken by the dependent histogram-valued variable from the quantile func-
tions that represent the distributions taken by the independent histogram-valued variables. Moreover,
it is possible to deduce a goodness-of-fit measure from the model. This measure appears to have a good
behavior: when we compare the representation of the estimated and observed quantile functions for
each observation we have good estimates when the coefficient of determination is close to one whereas
the estimated and observed quantile functions are more discrepant when the coefficient of determina-
tion is lower. As interval-valued variables are a particular case of the histogram-valued variables it is
possible to particularize this model for interval-valued variables. For both types of variables it will be
necessary to further study the proposed model, to explore its interpretation and behavior.
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