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Rua Marquês de São Vicente 225 Gávea. Rio de Janeiro cep: 22451-900, Brazil

E-mail: marchenamarlene@gmail.com

1 Introduction

In recent years, companies in various industries have been able to improve significantly their inven-

tory management processes through integration of information technology into their forecasting and

replenishment systems, and by sharing demand-related information with their supply chain partners

(Aviv, 2003). However, despite the benefits resulting of the implementation of the above practices,

inefficiencies still persist and are reflected in related costs.

The bullwhip effect, defined as the increase in variability along the supply chain, is a frequent and

expensive phenomenon pointed out as a key driver of inefficiencies associated with SCM. It distorts

the demand signals which cause instability in the supply chain and increase the cost of supplying

end-customer demand.

Forrester (1958) was the first to popularize this phenomenon. Inspired by Forrester’s work several

researchers have studied the bullwhip effect. Sterman (1989) use the Beer Game, the most popular

simulation of a simple production and distribution system developed at MIT, to demonstrated that the

bullwhip effect is a significant problem with important managerial consequences. It results in unnec-

essary costs in supply chains such as inefficient use of production, distribution and storage capacity,

recruitment and training costs, increased inventory and poor customer service levels (Metters,1997

and Lee et al. 1997b). Lee et al. (1997a,b) identified four main causes of the bullwhip effect, i.e.,

demand forecasting, order batching, price fluctuation and supply shortages.

Since the bullwhip effect is an expensive occurrence many attention have been devoted to it in recent

years. Forecasting methods, demand processes and information sharing are the main aspects studied

of this phenomenon.

Using a first-order autoregressive demand process, Chen et al. (2000a,b) investigate the impact of

the simple moving average and exponential smoothing forecasts on the bullwhip effect for a simple,

two-stage supply chain with one supplier and one retailer. Zhang (2004a) investigates the impact of

different forecasting methods on the bullwhip effect for a simple inventory system with a first-order

autoregressive demand process. By quantifying the bullwhip effect they show the impact of forecasting

methods on bullwhip effect.

On regarding the demand process, a variety of time-series demand models have appeared in the

literature of inventory control and SCM. By far, the first order autoregressive process,AR(1), is the

most frequently adopted demand model to study the bullwhip effect (Lee et al., 1997a,b; Chen et al.,

2000a,b; Zhang, 2004). Recent works use more realistic demand models such as the autoregressive

moving-average demand model (Box and Jenkins, 1970). Luong et al. (2007) use an AR(2) and a

general AR(p) models; Duc et al. (2008) use a ARMA(p, q) model. In all these models an analytical

derivation of the bullwhip effect measure is presented.

Zhang (2004b) uses an ARMA model and Gilbert (2005) uses an ARIMA model to study the demand

evolution in supply chains. They show that the order history preserves the autoregressive structure

of the demand, in both studies closed form expressions are given. In addition Zhang’s work give a

simple algorithm to quantifying the bullwhip effect. Inspired for this result we study the theoretical

and practical applications of use this algorithm in order to measure the bullwhip effect for different

demand process.
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We have demonstrated that the use of a generalized form of the bullwhip effect measure makes possible

to get accurate estimations of bullwhip effect. We point out that no approximation is required.

Moreover, we show that for certain types of demand processes the use of MMSE considered in the

model leads to significant reduction in the safety stock level. All these observations highlight the

potential economic benefits resulting from the use of time series analysis.

The structure of our paper is as follows. The next section presents the inventory model. Section

three presents a general ARMA(p, q) case with the ARMA(1, 1) case as particular case. Next, section

four presents the economic implications of the bullwhip effect. The final section summarizes the main

finding of the research.

2 Inventory model

In this paper we consider a simple supply chain model for a single item and an order-up-to inventory

policy. We assume that there is a fixed lead time, L, between the time an order is placed and the time

that it is received, shortages are back-ordered and no fixed ordering cost exists. The sequence of events

during a replenishment cycle for each fixed period t is as follows: first, the retailer receives orders made

L periods ago, second, the demand, dt, is observed and satisfied, third, the retailer observes the new

inventory level and finally places an order on the manufacturer.

Let Ot be the order quantity in period t and yt be the inventory position after placing the order in

period t. So following this replenishment cycle the order quantity at the end of period t can be written

as:

Ot = yt − yt−1 + dt(1)

It is well know that, under the assumption of normal demand distribution and in the absence of fixed

ordering cost, the order-up-to policy is optimal and the order-up-to-level, yt, is expressed as:

yt = DL
t + zσLt

where DL
t =

∑L
τ=1 dt+τ is the total demand during lead-time and zσLt is the safety stock. The safety

stock is composed by the safety factor, z, which is a fixed constant chosen to meet a required service

level, and the lead-time standard deviation, σLt . Note that if these values are known, the order-up-to

level in any period is constant and, consequently, the order will be equal to the last observed demand,

therefore, there is no bullwhip effect. However, these values are in general unknown and the retailer

must estimate yt from the observed demand as:

yt = D̂L
t + zσ̂Lt(2)

Let zt be the information set which represents all the information available until period t, zt =

{dt, dt−1, ....}, D̂L
t =

∑L
τ=1 d̂t(τ) is an estimate of the mean demand over L periods based on the

information set, and σ̂Lt =
√
V ar(DL

t − D̂L
t ) is an estimate of the standard deviation of L periods

forecast error.

The calculation of yt based on forecasting values is one of the main causes for the variability increase

along the supply chain or, in other words, the bullwhip effect. Thus, we need some measures of

performance for this effect. The definition commonly used for the bullwhip effect in the literature of

supply chain management is:

M =
V ar(Ot)

V ar(dt)
(3)
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i.e., the ratio between the variance of orders and the variance of the demand. Now, in order to get

the bullwhip effect we combine equation (2) and equation (1) to rewrite the order quantity as:

Ot = (D̂L
t − D̂L

t−1) + z(σ̂Lt − σ̂Lt−1) + dt(4)

then, taken the variance in both side of the above equation we can reach to quantify this effect.

A bullwhip measure equal to one means that there is no variance amplification, larger than one means

that there is a variance amplification or the bullwhip effect is present, if it is smaller than one means

that the orders are less variable or smoothed if compared with the demand. The Minimum Mean

Squared Error (MMSE) forecasting is applied to predict the lead time demand.

3 ARMA(p,q) case

The MA(∞) representation of a stationary ARMA(p, q) demand process is written as:

dt = µd + Σ∞j=0ψjεt−j(5)

where µd 6= 0, εt ∼ N(0, σ2ε ) and the ψ-weights satisfies the homogeneous difference equation that

arise from match the coefficients in the follow identity and calculate them recursively,

(ψ0 + ψ1z + ψ2z
2 + · · ·)(1− φ1z − φ2z2 − · · · − φpzp) = (1 + θ1z + θ2z

2 + · · ·+ θqz
q),

where ψj = 0 for j < 0, ψ0 = 1 and ψj =
∑p

k=1 φkψj−k+θj for j ≥ 1. Note here that the homogeneous

difference equation is given by

ψj −
p∑

k=1

φkψj−k = 0, j ≥ max(p, q + 1)(6)

with initial conditions

ψj −
j∑

k=1

φkψj−k = θj , 0 ≤ j ≤ max(p, q + 1)(7)

Then, considering distinct AR roots, the general solution for the ψ-weights can be read off directly as:

ψj = c1z
−j
1 + · · ·+ cpz

−j
p(8)

where z1, . . . , zp are the roots of the AR polynomial φ(z) = 1−φ1z− · · · −φpzp. The specific solution

will depend on the initial conditions, as seen from equation (7). Note that these initial conditions

depend on the choice of the moving average parameters as well as the autoregressive parameters.

Proposition 1 (Zhang, 2004.) The retailer’s future independent ARMA(p, q) demand process can

be represented by an MA(∞) process with respect its errors as in (5). Its order, Ot, to its supplier is

given by

Ot = µd +
L∑
j=0

ψjεt +
∞∑
j=1

ψL+jεt−j(9)

Proof: See Zhang (2004b).
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Proposition 2 For a stationary ARMA(p,q) demand process, the measure for the bullwhip effect is

defined by:

M = 1 +
2
∑L

i=0

∑L
j=i+1 ψiψj∑∞

j=0 ψ
2
j

,(10)

where the ψj = 0 for j < 0, ψ0 = 1, and ψj =
∑p

k=1 φkψj−k + θj for j ≥ 1.

Proof: From Equation (9), we have

V ar(Ot) = σ2ε (
L∑
j=0

ψj)
2 + σ2ε

∞∑
j=1

ψ2
L+j = σ2ε (

∞∑
j=0

ψ2
j + 2

L∑
i=0

L∑
j=i+1

ψiψj).(11)

Since the variance of the demand process can be expressed as:

σ2d = σ2ε

∞∑
j=0

ψ2
j ,(12)

we complete the proof by substituting (11) and (12) in (3).

3.1 ARMA(1,1) case

The stationary ARMA(1,1) demand process is described as follow:

dt = µ+ φdt−1 + εt + θεt−1.(13)

Stationarity and invertible conditions impose |φ| < 1 and |θ| < 1. It can be shown that the mean and

variance of the demand process are µd = µ
1−φ1 and σ2d = (1+θ2+2φθ)σ2

ε
1−φ2 , respectively.

Proposition 3 For a stationary ARMA(1,1) demand process the measure for the bullwhip effect is

defined by:

M(L, φ, θ) = 1 +
2(φ+ θ)(1− φL)

(1− φ)(1 + θ2 + 2φθ)

[
1− φL+1 + θφ(1− φL−1)

]
.(14)

Proof: Since the AR polynomial associated with (13) is φ(z) = 1−φz, and its root, say z1, is z1 = φ−1,

then the general solution for the ψ-weights can be written directly from equation (8) as ψj = cφj .

From (7) we find that the initial conditions are ψ0 = 1 and ψ1 = φ + θ, which combining with the

general solution, results in c = (φ + θ)/φ. Hence, ψj = (φ + θ)φj−1 for j ≥ 1. Since we know ψj , we

can rewrite the follow relations as:

L∑
i=0

L∑
j=i+1

ψiψj = ψ0

L∑
j=1

ψj +

L∑
i=1

L∑
j=i+1

ψiψj

= (φ+ θ)
1− φL

1− φ
+
φ(φ+ θ)2(1− φL)(1− φL−1)

(1− φ)(1− φ2)

=
(φ+ θ)(1− φL)

(1− φ)(1− φ2)
[
1− φL+1 + θφ(1− φL−1)

]
(15)

and
∞∑
j=0

ψ2
j = 1+θ2+2φθ

1−φ2 .(16)

We complete the proof substituting (15) and (16) in (10). Using a generalized formula for the variance

ratio, we get a similar expression to that obtained by Duc et al. (2008).
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Table 1: Bullwhip, SS and SSLT gen-

erated by ARMA(0.95,0.4) demand

process.*

L Bullwhip SS SSLT

1 1.13711 7.299 1.645

2 1.44321 10.323 4.201

3 1.89270 12.643 7.304

4 2.46294 14.598 10.817

5 3.13393 16.322 14.652

6 3.88802 17.879 18.745

7 4.70970 19.312 23.048

8 5.58531 20.645 27.522

9 6.50289 21.898 32.137

10 7.45199 23.082 36.867

* SCperf(0.95,0.4,L,0.95)

4 Economic implications

An important economic application of the use of time series methods can be seen in the safety stock

level, which is the amount of inventory that the retailer needs to keep in order to protect himself

against deviations from average demand during lead time.

Let SS = zσd
√
L and SSLT = zσ̂Lt be two safety stock measures. The former is traditionally

used in some operational research manuals and it is based on the standard deviation of the demand

over L periods, the latter is the safety stock as defined in (2) and it is based on the standard deviation

of L periods forecast error.

Chen et al. (2000b, pp. 271) pointed out that SSLT will be greater than SS, i.e., using time

series analysis, the retailer will hold more safety stock to achieve the same service level. According

to the authors this is because SS captures only the uncertainty due to the random error ε and SSLT

captures this uncertainty plus the uncertainty due to the fact that the mean demand DL
t is estimated

by D̂L
t , in our case using the MMSE forecasting method. We show by numerical experiments that for

some special cases SSLT is lower than SS regarding lead-time and service level.

It was verified that for ARMA and AR cases, high values on AR parameters and small values of

lead-time result in lower SSLT . However, in general, there is a lead-time value for which this situation

is reversed. Table 1 shows the safety stock levels SS and SSLT generated by ARMA(0.95, 0.4) demand

process and service level equal to 0.95 for ten different values of lead-time, L = 1, .., 10. For instance,

for L = 2 we have SS = 10.3 and SSLT = 4.2, a difference of 6 units which represents a saving of

59.2% over SS. Note that this difference decreases when the lead-time increases until L = 6 where we

have SSLT larger than SS.

It is difficult to know for which value of lead-time SSLT becomes larger than SS. In general, it

depends on the AR parameters of the demand. For negative values of the AR parameters, it occurs

for lower values of lead-time.

Table 1 shows that there is a benefit resulting from the use of SSLT instead of SS as a measure

for the safety stock level when regarding the lead-time. This benefit was verified for special demand

processes where the AR parameters are high. Moreover, if for those lead-time values where SSLT is
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Table 2: SS and SSLT generated by different demand processes

Models Service Level L=1 L=2 L=3

SL SS SSLT SS SSLT SS SSLT

0.90 5.687 1.282 8.043 3.273 9.850 5.691

0.91 5.950 1.341 8.414 3.424 10.305 5.954

0.92 6.235 1.405 8.818 3.588 10.800 6.239

0.93 6.549 1.476 9.262 3.769 11.343 6.553

0.94 6.899 1.555 9.757 3.971 11.950 6.904

ARMA(0.95, 0.4) 0.95 7.299 1.645 10.323 4.201 12.643 7.304

0.96 7.769 1.751 10.987 4.471 13.456 7.774

0.97 8.346 1.881 11.803 4.803 14.456 8.352

0.98 9.114 2.054 12.889 5.245 15.785 9.120

0.99 10.323 2.326 14.599 5.941 17.881 10.330

smaller than SS, we consider the service level, it is verified that SSLT is always smaller than SS when

the service level increases.

Table 2 presents SSLT and SS generated by the same demand process for L = 1, 2, 3 and ten

different values of service level, SL = 0.9, 0.91, ..., 0.99. Note that when considering the service level,

the difference between SS and SSLT increases for larger values of service level differently when lead-

time is regarded. For instance, for L = 1 and SL = 0.97 we have SS = 8.35 and SSLT = 1.88. There

is a difference of 6.47 units which represents a saving of 77.46% over SS.

5 Summary

In this paper we quantify the bullwhip effect using Zhang’s result for a stationary ARMA(p, q) demand

process which admits an infinite MA representation. It is well known that measuring the bullwhip effect

is difficult in practice but we show that using this methodology the calculus of this ratio is simplified

if compared with traditional recursive procedures. In some particular cases we obtain explicit formulas

for this ratio.

With this theoretical application we present an R implementation for the bullwhip effect. We program

SCperf function whose output gives numerical results for the bullwhip effect and other supply chain

performance variables. Our function explores a variety of demand process scenarios and illustrates

how tuning the parameters of the demand result in the bullwhip effect and the safety stock level.

In conclusion, when inventory cost and service level are of primary concern the MMSE forecast should

be used since it leads in some cases to lowest safety stock level. Although the MMSE forecasting requires

more computational effort, the SCperf function implements this method in an easy way. Our findings

highlights the potential economic benefits resulting from the use of time series analysis but it depends

on the underlying demand process.
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