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Abstract

In regression analysis the relationship between one response and a set of explanatory variables
is investigated. The (response and explanatory) variables are usually single-valued. However, in
several real-life situations, the available information may be formalized in terms of intervals. An
interval-valued datum can be described by the midpoint (its center) and the radius (its half width).
Here, limiting our attention to the linear case, regression analysis for interval-valued data is studied.
This is done by considering two linear regression models. One model investigates the relationship
between the midpoints of the response variable and of the explanatory variables, whereas the other
one analyzes the relationship between the radii. The two models are related by considering the same
regression coefficients, i.e. the same linear relationship is assumed for the midpoints and the radii.
However, in some cases, this assumption may be too restrictive. To overcome this drawback, additive
coefficients for the model of the radii are introduced and their magnitude is tuned according to the
Lasso technique allowing us to set to zero some of these additive coefficients. In order to show how
the proposed method works in practice the results of an application to real-life data are discussed.
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Introduction

In the presence of interval-valued data, the attributes involved can be expressed by a lower and
an upper bound, z and z with z ≥ z, respectively, providing the boundaries of the interval-valued data.
However, interval-valued data are usually expressed in terms of the so-called midpoint and radius, say
zM and zR (≥ 0), with zM = (z+z)

2 and zR = (z−z)
2 . The midpoint is the center of an interval (the

location), whereas the radius is the half-width of an interval (a measure of the imprecision). In this
work, the linear regression problem for interval-valued data is investigated. In the literature, the
topic has been deeply analyzed. See, for instance, González-Rodŕıguez et al. (2007), Blanco et al.
(2008, 2010), Lima-Neto and De Carvalho (2008, 2010). The peculiarity of the here-proposed model
is that the Lasso technique (Tibshirani, 1996) is considered in order to get regression coefficients for
the midpoints close as much as possible to the corresponding ones for radii as it will be clarified in
the next section that contains the details on the regression model. Then, an algorithm to estimate
the parameters of the regression model is provided. Finally, the results of an application are discussed
and some concluding remarks are given.

Model

Let Y and X1, . . . , Xp be an interval-valued response variable and a number of interval-valued
explanatory variables, respectively, observed on n units. The linear relationship between Y and
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X1, . . . , Xp can be written as

yM = y∗M + eM = XMbM + eM (midpoint model),
yR = y∗R + eR = XRbR + eR = XR (bM + bA) + eR (radius model),

(1)

where yM and yR denote the vectors of length n of the observed midpoints and of the observed radii
of the response variable, respectively, and y∗M and y∗R are the vectors of the theoretical midpoints
and radii of the response variable, respectively. XM and XR are, respectively, the matrices of order
(n × p + 1) of the midpoints and of the radii of the explanatory variables containing the unit vector
of length n in their first column. eM and eR denote the residual vectors. Finally, bM and bR are the
vectors of length (p+1) of the regression coefficients for the midpoint and radius models, respectively,
where bR = bM + bA being bA the vector of the additive coefficients. In (1) the coefficients of the
radius model bR are equal to the corresponding ones of the midpoint model bM up to the additive
coefficients bA. Such a model takes inspiration from the idea underlying González-Rodŕıguez et al.
(2007) in the sense that the attempt to seek a common set of regression coefficients for the midpoint
and the radius model is pursued even if to some extent. This is done by adding specific regression
coefficients that, however, are constrained to be as small as possible according to a tuning parameter
to be chosen by the researcher.
The parameter vectors bM and bA are estimated in such a way to minimize a suitable dissimilarity
measure between observed and theoretical data. For this purpose, the squared distance d2

θ proposed
by Trutschnig et al. (2009) is considered. Given two intervals G ≡ (GM , GR) and H ≡ (HM , HR) it is

d2
θ = (GM −HM )2 + θ (GR −HR)2(2)

with θ ∈ (0, 1]. When θ = 1, d2
θ compares G and H by the sum of the squared distances of their

midpoints and of their radii. The choice of θ depends on the relative importance of the radius distance
with respect to the midpoint distance. A reasonable choice seems to be θ = 1

3 .
Using (2), the loss function to be minimized is

min
bM ,bA

‖eM‖2 + θ ‖eR‖2 = ‖yM −XMbM‖2 + θ ‖yR −XR (bM + bA)‖2 .(3)

The loss function in (3) requires some constraints in order to guarantee that the estimated radii are
non-negative and that the additive coefficients bA are as small as possible. The former requirement
can be achieved setting

XR (bM + bA) ≥ 0.(4)

The latter requirement can be managed using the Lasso technique (Least Absolute Shrinkage and
Selection Operator) proposed by Tibshirani (1996). Lasso is a well-known method used in standard
regression analysis aiming at shrinking some regression coefficients and setting some others to 0. This
is done by minimizing the residual sum of squares with the constraint that the sum of the absolute
values of the regression coefficients is smaller than a threshold. It can be shown that the minimization
problem to be solved by Lasso is a quadratic programming problem with linear inequality constraints,
the solution of which can be found in Lawson and Hanson (1995). The use of the Lasso constraint in the
here-proposed model for interval-valued data can be carried out introducing the following constraint:

p∑
j=0

|bAj | ≤ t.(5)

This allows us to limit the magnitude of the additive coefficients as much as possible according to the
choice of t. Note that, differently from the standard Lasso, in (5) the Lasso constraint is considered
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for all the (additive) coefficients including the intercept. Taking into account (3), (4) and (5) we then
get the following constrained minimization problem:

min
bM ,bA

‖yM −XMbM‖2 + θ ‖yR −XR (bM + bA)‖2 ,

s.t. XR (bM + bA) ≥ 0,
p∑
j=0
|bAj | ≤ t.

(6)

We refer to (6) as Lasso-based Interval-valued Regression (Lasso-IR).
Before minimizing (6), the shrinkage parameter t must be fixed. The possible values of t range from
0 to tMAX. When t = 0 it is bA = 0 and, therefore, the same regression coefficients for the midpoints
and the radii are found. tMAX is the smallest value such that two separate regression problems for the
midpoint and the radius models are solved. Of course, if t > tMAX is chosen the same solution for the
case with t = tMAX is obtained. The value of t can be chosen either on the basis of the experience of
the researcher or according to cross-validation techniques, such as the k-fold cross-validation procedure
(see, for instance, Efron and Tibshirani, 1993). In Lasso-IR for different values of t ranging from 0 to
tMAX we can compute the predictive accuracy as

CV (t) =
1
n

n∑
i=1

[(
yMi − ŷMi

(−k(i)) (t)
)2

+ θ
(
yRi − ŷRi(−k(i)) (t)

)2
]
,(7)

where ŷM
(−k(i))
i and ŷR

(−k(i))
i denote the i-th fitted midpoint and radius, respectively, computed setting

t and removing the k-th part of the data. Then the optimal value of t is

tOPT = arg min
0≤t≤tMAX

CV (t) .(8)

See, for more details about LASSO-IR, Giordani (2011).

Algorithm

To solve the minimization problem in (6) an alternating least squares algorithm is proposed.
First, initial values for bA fulfilling the constraints in (6) must be given. For instance, these can be
found randomly from U[0,1] rescaling them if necessary. Then, the algorithm consists of updating
separately the vectors bM and bA keeping fixed the remaining one. Whenever a vector is updated,
the loss function to be minimized decreases. After updating both the vectors, if the loss function value
decreases less than a specified percentage (e.g. 0.0001%) from the previous function value, we consider
the algorithm converged, otherwise we repeat the updates of bM and bA. The function in (6) has a
lower bound and, therefore, the function value converges to a stable value.
The updates of bM can be found noting that the constraints in (6) do not play an active role in the
update of bM . After a little algebra (6) can be rewritten as∥∥∥∥∥

[
yM

θ1/2 (yR −XRbA)

]
−
[

XM

θ1/2XR

]
bM

∥∥∥∥∥
2

= ‖c−DbM‖2 ,(9)

where c and D are implicitly defined in (9), from which we get

b̂M =
(
D′D

)−1 D′c.(10)

In order to update bA and starting from (6) it is easy to see that the problem to be solved reduces to

min
bA

‖yR −XR (bM + bA)‖2 ,

s.t. XR (bM + bA) ≥ 0,
p∑
j=0
|bAj | ≤ t,

(11)
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keeping bM fixed. The problem in (11) can be recognized as a constrained regression problem where
the response variable is yR−XRbM and the explanatory ones are XR. It can be shown that (11) can
be rewritten as

min
bA

‖(yR −XRbM )−XRbA‖2 ,

s.t.

[
XR

H

]
bA ≥

[
−XRbM
t12p+1

]
,

(12)

in which 12p+1 is the unit column vector of length 2p+1 and H is a (2p+1× p+ 1) matrix containing in
its rows all the 2p+1 combinations of length (p+1) of ±1. In the literature there exist several methods
to solve (12). See, for instance, Lawson and Hanson (1995) and Gill et al. (1981). For further details
about the iterative algorithm see Giordani (2011).

Application

In this section the results of an application to real data are discussed. The data set refers to the
values of three cardiological variables, namely the pulse rate, the systolic pressure and the diastolic
pressure observed on a set of patients. In the literature, the data can be found in Billard and Diday
(2000) and, for the convenience of the reader, is reported in the following table.

Cardiological data set (Billard and Diday, 2000)

Patient Pulse rate Systolic pressure Diastolic pressure
1 [44,68] [90,100] [50,70]
2 [60,72] [90,130] [70,90]
3 [56,90] [140,180] [90,100]
4 [70,112] [110,142] [80,108]
5 [54,72] [90,100] [50,70]
6 [70,100] [130,160] [80,110]
7 [63,75] [140,150] [60,100]
8 [72,100] [130,160] [76,90]
9 [76,98] [110,190] [70,110]
10 [86,96] [138,180] [90,110]
11 [86,100] [110,150] [78,100]

The recorded values take the form of intervals and concern n = 11 patients. In order to study the
linear dependence of the pulse rate (Y ) with respect to the systolic pressure (X1) and the diastolic
pressure (X2) we applied Lasso-IR. Since the number of units is low, the leave-one-out procedure (i.e.
k-fold with k = 1) has been considered for determining the tuning parameter t, where t ranged from 0
to tMAX = 1.29. with increasing step equal to 0.01. The minimum value of CV (t) was obtained when

tOPT = 0.79. By setting t = 0.79 we got b̂M =
(

11.12 −0.07 0.90
)′

and b̂A =
(

0 0 −0.79
)′

from which

YM = 11.12− 0.07X1M + 0.90X2M ,

YR = 11.12− 0.07X1R + 0.11X2R.

The value of b̂A2 suggested that there exist different linear relationships between Y and X2 for the
midpoints and for the radii. Specifically, a positive relationship was found for the medium levels (i.e.
the midpoints of the intervals) of the pulse rate and the diastolic pressure (b̂M2 = 0.90). Such a
strong relationship did not hold for the variations (i.e. the radii). In fact, the corresponding estimated
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regression coefficient was b̂R2 = 0.11. Conversely, since b̂A1 = 0 the same relationship for the midpoints
and the radii was found with regard to Y and X1. In particular, a negative relationship was obtained
between pulse rate and systolic pressure (b̂M1 = b̂R1 = −0.07). Finally, no distinction for the intercepts
of the midpoint and radius models was found.

Final remarks

In this paper we proposed a tool called Lasso-IR for performing linear regression analysis of
interval-valued data. It consists of two regression models, one for the midpoints of the intervals and
the other one for the radii. The two regression models are characterized by the same regression
coefficients as much as possible according to a given criterion based on the Lasso technique. A unique
set of coefficients is desirable for the sake of parsimony. Unfortunately, this can limit the applicability
of the model in some cases. Thus, to make the model more flexible, the regression coefficients for
the radii are allowed to differ to some extent from the corresponding ones for the midpoints. This
is achieved by introducing additive coefficients for the radius model such that their sum in absolute
value is not bigger than a shrinking parameter t that can be either fixed in advance or chosen by
cross-validation techniques.
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