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Introduction

We propose a method of principal component analysis (PCA) for high dimension low sample-size

data based on the classification of data. The aim of PCA is to summarize the latent similarity structure

of data observed in high dimensional space by projecting the data into a much smaller dimensional

space. However, if the number of dimensions (variables) is much larger than the number of objects

(sample size), then we can not obtain any solution of PCA since the variance-covariance matrix is

singular. In order to solve this problem, we propose a variable selection criterion to reduce the number

of variables based on an external criterion for a classification of data and a transformation method

based on a classification of variables. Since the classical PCA is based on orthogonal projection, the

metric projection defined in convex space, so the data space, is non-expansive. Therefore, a norm

between two projected objects in a smaller dimensional space is inevitably smaller than the norm

between the corresponding pre-projected two objects in a high dimensional space. The root cause

of this problem is that PCA only focuses on minimizing the sum of square of distances from objects

in a high dimensional space to a hyper plane in a lower dimensional space, and does not consider

similarities among objects in a high dimensional space. In order to solve this problem, we extract the

similarity structure of objects in a high dimensional space by using a fuzzy clustering method. By

tacking the result to the PCA, we have proposed a new PCA considering the similarity structure of

objects in a high dimensional space. [5] We apply this PCA to the transformed data.

Criterion for the variable selection

Suppose the observed data xai which are values of n objects (samples) with respect to p variables

(dimensions) are denoted by the following:

X = (xai), i = 1, · · · , n, a = 1, · · · , p. (1)

We discuss data when p is much larger than n, often written p >> n. This data is supposed to have

an external criterion for classification that is data is labeled into K clusters. The labeled data are

shown as follows:

Xk = (xaik), ik = 1, · · · , nk, a = 1, · · · , p, k = 1, · · · ,K, (2)

where
∑K

k=1 nk = n. Objects in X is ordered according to the label’s order. We propose a variable

selection criterion to reduce the number of variables based on the external criterion of the classification

as follows:

C(a) =
1

n
(

n1∑
i1=1

ui11a + · · ·+
nK∑

iK=1

uiKKa), a = 1, · · · , p, (3)

where uikka shows degree of belongingness of an object ik to a cluster k with respect to a variable a. The

object ik corresponds to an object labeled to a cluster k which is represented as xik = (x1ik , · · · , xpik)t
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in equation (2). uikka is assumed to satisfy the following conditions:

uikka ∈ [0, 1], ∀ik, k, a,
K∑
k=1

uikka = 1, ∀ik, a. (4)

From equation (4), the criterion shown in equation (3) can show how the obtained classification

structure at each variable adjusts to the given external classification structure and 0 ≤ C(a) ≤ 1. The

larger value of C(a) shows the larger explanation power for the external classification information.

Therefore, using a threshold for C(a), we can select variables capable of explaining the external

classification information of data. In order to obtain the clustering results uikka, we use a fuzzy

clustering. We use the uika as a general notation. Suppose dija is (i, j)-th element of a distance

matrix Da and shows dissimilarity between objects i and j with respect to a variable a. This is

defined as Da = (dija), dija =
√
(xai − xaj)2, i, j = 1, · · · , n, a = 1, · · · , p. For the fuzzy clustering

method in which the target data is dissimilarity data, the fanny method [3] is used. The objective

function of this method is defined as follows:

J(Ũ) =
K∑
k=1

⎛
⎝ n∑

i=1

n∑
j=1

(ũik)
m(ũjk)

mdij/2
n∑

s=1

(ũsk)
m

⎞
⎠ . (5)

Where, ũik shows degree of belongingness of an object i to a cluster k and satisfies the following

conditions:

ũik ∈ [0, 1], ∀i, k,
K∑
k=1

ũik = 1,∀i. (6)

m, (1 < m < ∞) shows a control parameter which can control fuzziness of the belongingness. dij
shows dissimilarity between objects i and j. The purpose of this method is to estimate Ũ = (ũik)

which minimize equation (5). In equation (5), the objective function with respect to a variable a is

redefined as follows:

J(Ua) =
K∑
k=1

⎛
⎝ n∑

i=1

n∑
j=1

(uika)
m(ujka)

mdija/2
n∑

s=1

(uska)
m

⎞
⎠ , a = 1, · · · , p. (7)

Where Ua, (a = 1, · · · , p) is a matrix for a-th variable whose element uika shows degree of belongingness

of an object i to a cluster k with respect to a variable a. uika can be estimated by minimizing equation

(7) under the conditions shown in equation (4).

Clustering variables to categories

If p >> n, then the variable selection has a problem; when the threshold value for C(a) is large,

loss of the data information will be large, consequently the remained variables are not sufficient to

explain the data structure. Likewise, when the threshold value for C(a) is small, then still we have

a problem of p > n. In order to solve this problem, we propose a method to transform the remained

data after the variable selection to form data as p < n without deleting any variables. Suppose the

remained data after the variable selection shown in the previous section as follows:

X̃ = (x̃ai), i = 1, · · · , n, a = 1, · · · , p̃, (8)

where p̃ < p, however it is still p̃ > n. First, we transform the data to include the external classification

information of objects. We use interval to represent each cluster with respect to each variable as follows:

Y = (yak) = ([y
ak
, yak]), a = 1, · · · , p̃, k = 1, · · · ,K, (9)
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where yak = [y
ak
, yak] shows the interval-valued data of the a-th variable with respect to a cluster k

which has the minimum value y
ak

and the maximum value yak. From equations (2) and (8), y
ak

and yak
are obtained as follows: y

ak
= min

ik
x̃aik , yak = max

ik
x̃aik , a = 1, · · · , p̃. This means that K clusters

over the objects which is given as external classification information are expressed by K intervals.

In order to obtain the similarity structure of variables over the K classified objects, we classify the

data shown in equation (9). The dissimilarity between ya = (ya1, · · · , yaK) and yb = (yb1, · · · , ybK) is

defined as follows:

dab =
K∑
k=1

sup{d(x, ybk)|x ∈ yak}, d(x, ybk) = inf{d(x, y)|y ∈ ybk}, (10)

dba =
K∑
k=1

sup{d(yak, y)|y ∈ ybk}, d(yak, y) = inf{d(x, y)|x ∈ yak}. (11)

Where, d(x, y) shows distance between x and y, ∀x ∈ yak, ∀y ∈ ybk. Therefore, dab �= dba, (a �= b). We

use the symmetric part of the dissimilarity as follows: d̃ab = (dab + dba)/2. Applying this dissimilarity

d̃ab to the fanny method shown in equation (5), we obtain a fuzzy clustering result

Ũ = (ũak), a = 1, · · · , p̃, k = 1, · · · , K̃, (12)

under the conditions shown in equation (6), where K̃ is a number of categories (clusters) satisfied

K̃ < n. Based on the result shown in equation (12), the data shown in equation (8) is categorized into

K̃ categories as follows: X̃k = {x̃a | pak = 1}, x̃a = (x̃a1, . . . , x̃an), k = 1, · · · K̃, where pak satisfy

ũak = max1≤k≤K̃ ũak → pak = 1, a = 1, . . . , p̃, under the condition of
∑K̃

k=1 pak = 1. In the case that

max1≤k≤K̃ ũak is not unique, we select the first category which appears having the maximum degree

of belongingness over the categories. We rewrite the data sets X̃k as follows:

X̃k = (x̃aki), i = 1, · · · , n, ak = 1, · · · , p̃k, k = 1, · · · , K̃, (13)

where
∑K̃

k=1 p̃k = p̃. In order to create the K̃ < n type data, variables included to the same category

is summarized for a fixed object by using an interval as follows:

Ỹ = (ỹik) = ([ỹ
ik
, ỹik]), i = 1, · · · , n, k = 1, · · · , K̃, (14)

where ỹik = [ỹ
ik
, ỹik] shows the interval-valued data of the i-th object with respect to a cluster k (a

category k) which has the minimum value ỹ
ik

and the maximum value ỹik. From equation (13), ỹ
ik

and ỹik are obtained as follows: ỹ
ik

= min
ak

x̃aki, ỹik = max
ak

x̃aki, i = 1, · · · , n. Since K̃ < n in

equation (14), we can apply the data to PCA.

Selection of number of clusters

In order to obtain a more accurate result of PCA, we use dissimilarity structure of objects

in higher dimensional space in which the objects exist. For representing the dissimilarity structure,

we use classification structure of objects. Since according to the change of number of clusters, the

obtained classification structure is changed, obtaining an adaptable classification structure which can

represent the dissimilarity structure well is closely related with how to determine an adaptable number

of clusters. The criterion of selection of an appropriate number of clusters is defined as follows:

C(K) =
n∑

i�=j=1

sij s̃
(K)
ij /

⎛
⎝
√√√√ n∑

i�=j=1

s2ij

√√√√ n∑
i�=j=1

s̃
(K)2

ij

⎞
⎠ , (15)
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where sij shows a similarity between objects i and j and is calculated from data shown in equation

(14) as follows: S = (sij), sij = 1 − dij/maxi,j{dij}, i, j = 1, · · · , n. The dissimilarity dij between

ỹi = (ỹi1, · · · , ỹiK̃) and ỹj = (ỹj1, · · · , ỹjK̃) is obtained by using equations (10) and (11). s̃
(K)
ij shows

the restored similarity obtained as follows [4]:

s̃
(K)
ij =

K∑
k=1

K∑
l=1

w
(K)
kl u

(K)
ik u

(K)
jl , (16)

where w
(K)
kl is considered to be a quantity which shows the asymmetric similarity between a pair of

clusters when we assume the number of clusters as K. In this paper, we define the w
(K)
kl as derived

from an assumption of normal distribution of objects in each cluster as follows:

w
(K)
kl = 1−1/(1+e−w̃

(K)
kl ), w̃

(K)
kl =

1

2

(
‖µ(k,K)−µ(l,K)‖Σ−1

(k,K)
+tr(Σ−1

(k,K)Σ(l,K)−I)+log
|Σ(k,K)|
|Σ(l,K)|

)
, (17)

where

‖µ(k,K) − µ(l,K)‖Σ−1
(k,K)

= (µ(k,K) − µ(l,K))
′
Σ−1
(k,K)(µ(k,K) − µ(l,K)), ∀k, l.

Where w̃
(K)
kl is derived from Kullback-Leibler’s divergence [2]. w

(K)
kl shows the similarity from a

cluster k to a cluster l when we assume the number of clusters is K. I is a unit matrix. µ(k,K) and

Σ(k,K) are an expected value and a variance-covariance matrix of S(k,K) which is shown as follows:

S(k,K) = {ỹi | p(K)
ik = 1}, ỹi = (ỹi1, . . . , ỹip), ỹia = (ỹ

ia
+ ỹia)/2, ∀k, where p

(K)
ik satisfy u

(K)
ik =

max1≤k≤K u
(K)
ik → p

(K)
ik = 1, i = 1, . . . , n, under the condition of

∑K
k=1 p

(K)
ik = 1. u

(K)
ik shows

degree of belongingness of an object i to a cluster k when we assume the number of clusters is K,

and satisfy the condition (6). u
(K)
ik is obtained by applying calculated symmetrized dissimilarity

derived from equations (10) and (11) to a fuzzy clustering shown in equation (5). From equation (17),

w
(K)
kl �= w

(K)
lk , (k �= l), w

(K)
kl ∈ [0, 1] are satisfied. C(K) shown in equation (15) shows the degree of

alignment between sij and s̃
(K)
ij . Therefore, the larger value of C(K) is better when compared with

several cases in which we assume several numbers of clusters shown as K. In other words, selecting the

bestK when we obtain the largest value of C(K) means selecting the best matched latent classification

structure of original similarity matrix, S = (sij), since s
(K)
ij shown in equation (16) involves the latent

classification structure of sij when the number of clusters is fixed as K. The concentration around

the expected value of the criterion shown in equation (15) for the different wkl has been proven. [5]

PCA based on fuzzy clustering

First, we discuss single-valued PCA which is interpreted geometrically as finding a projected

space spanned by vectors that show direction of the principal components. Let L be a nonempty subset

of the inner product space X. Then we define a mapping PL from X into the subsets of L called the

metric projection onto L. Then PL(o1) is defined as follows: PL(o1) = {o2 ∈ L| ‖ o1−o2 ‖= d(o1, L)},
where o1 ∈ X and d(o1, L) = info2∈L ‖ o1−o2 ‖ . Let L be a convex Chebyshev set in which for each

o1 ∈ X, there exists at least one nearest point in L. Then PL is nonexpansive, that is,

‖ PL(o1)− PL(o2) ‖≤‖ o1 − o2 ‖, ∀o1,o2 ∈ X. (18)

The problem of the PCA is that the metric projection only satisfies equation (18) and PCA does not

consider the size of values shown as follows: C(o1,o2) =‖ o1 − o2 ‖ − ‖ PL(o1) − PL(o2) ‖. Our

obtained data is interval-valued data. The empirical joint density function for bivariate a and b for

interval-valued data has been defined [1] as follows:

f(ỹk, ỹl) =
1

n

n∑
i=1

Ii(ỹk, ỹl)/||Z(i)||, (19)
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where Ii(ỹk, ỹl) is the indicator function where each element of (ỹk, ỹl) is or is not in the rectangle

Z(i) = ỹik × ỹil consisted of two sides which are intervals [ỹ
ik
, ỹik] and [ỹ

il
, ỹil]. ỹk and ỹl are random

variables. ||Z(i)|| is the area of this rectangle. ỹk is k-th column vector of Ỹ in equation (14) and

is shown as follows: ỹk = (ỹ1k, · · · , ỹnk)t = ([ỹ
1k
, ỹ1k], · · · , [ỹnk, ỹnk])t. We extend the empirical joint

density function shown in equation (19) as follows:

f̃(ỹk, ỹl) =
1

n

n∑
i=1

(wiIi(ỹk, ỹl)/||Z(i)||, wi =
K∑
k=1

umik/
n∑

i=1

K∑
k=1

umik, i = 1, · · · , n, m ∈ (1,∞), (20)

where uik, i = 1, · · · , n, k = 1, · · · ,K show the obtained degree of belongingness of the objects

to the clusters when K is the selected appropriate number of clusters. Then fuzzy covariance for

interval-valued data between variables k and l is derived as follows:

ĉkl =

∫ ∞

−∞

∫ ∞

−∞
(ỹk − ¯̃yk)(ỹl − ¯̃yl)f̃(ỹk, ỹl)dỹkdỹl, ¯̃yk =

1

2n

n∑
i=1

(ỹ
ik
+ ỹik). (21)

Substituting equation (20) into equation (21), and from equation (6), we have obtained the following:

ĉkl = (1/(4n))
n∑

i=1

wi(ỹik + ỹ
ik
)(ỹil + ỹ

il
)− (1/n)¯̃yl

n∑
i=1

(wi(ỹik + ỹ
ik
))/2

−(1/n)¯̃yk

n∑
i=1

(wi(ỹil + ỹ
il
))/2 + (1/n)¯̃yk¯̃yl.

(22)

From equations (6) and (20), wi satisfy the following condition:

wi > 0,
n∑

i=1

wi = 1. (23)

In a hard clustering when uik ∈ {0, 1}, ∑K
k=1 uik = 1 is satisfied, the weights wi in equation (20) is

wi = 1/n, ∀i. (24)

Since uik satisfies conditions shown in equation (6), the weight wi in equation (20) shows how an

object is clearly classified for the obtained classification structure. If an object i is clearly classified to

a cluster, then the weight wi becomes larger, and if the classification situation with respect to an object

i is an uncertainty situation, then the value of wi becomes smaller. Therefore, it can be seen that the

weights shown in equation (20) show a degree of fuzziness of the clustering with respect to each object

and the proposed fuzzy covariance matrix for interval-valued data, Ĉ = (ĉkl), k, l = 1, · · · , K̃ shown in

equation (22) involve a classification structure over the variables which is obtained by reflecting the

dissimilarity structure of objects in a higher dimensional space shown as ‖ o1 − o2 ‖ in equation (18).

Then based on the covariance matrix, we obtain principal components.

Numerical example

We use gene expression data for prostate cancer [6]. The data consists of 32 objects (subjects)

with respect to 12626 variables (genes) shown in equation (1). As external classification information,

32 objects are labeled into two clusters of which 23 objects are from shavings of prostate tissue with

cancer and 9 objects from shavings of prostate tissue are without cancer. The purpose is to obtain the

classification situation of objects in a lower dimensional space by PCA. Using the variable selection

criterion shown in equation (3), we selected variables which have more than 0.8 for the criterion. 90

variables remained. Based on the classification of variables, we create transformed 32 × 6 interval-

valued data shown in equation (14). For clustering this interval-valued data, we check the criterion
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shown in equation (15) when the number of clusters are 2, 3, and 4. The value of C(2) is largest when

compared with other two values of C(3) and C(4), so we select the number of clusters as 2. From

the obtained data shown in equation (14) and obtained weights from the result of fuzzy clustering

shown in equation (20), we obtained the covariance shown in equation (22). Using this covariance, we

obtain the principal components shown in figure 1. From this figure, we can see the subjects classified

into two clusters; 1-23 are from shavings of prostate tissue with cancer and 24-32 are from shavings

of prostate tissue without cancer.
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Fig. 1 Result for Proposed PCA

Table 1. Comparison of Cumulative

Proportion

Proposed PCA Centers Method

0.99 0.94

Table 1 shows a comparison of values of cumulative proportion which is the sum of the first and

the second proportions corresponding to the first and the second principal components shown in the

result of figures 1 and the result of the centers method [2]. This is a method of applying the data

consisting of centers of intervals to the conventional PCA. This method is also identical with a method

in which we use the conventional empirical joint density function shown in equation (19) and derive

the covariance and then apply the obtained covariance into the conventional PCA. From equation (24),

this method is the same as a case in which we use a hard clustering in a high dimensional space in our

proposed PCA. From equations (23) and (24), for the fair comparison of fuzzy and hard clustering, we

multiplied n to equation (22). From the result shown in table 1, we can see that the proposed PCA

could obtain a better result.

Conclusion

For high dimension low sample-size data, we cannot obtain a result of conventional PCA. In

order to obtain an efficient result of PCA for this type of data, we propose variable selection and

data transformation methods based on classification structure. A numerical example shows a better

performance of the proposed method.

REFERENCES (RÉFERENCES)
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