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Introduction

Investigators often collect multiple types of data to learn about an underlying biological process.

For example, in clinical trials, the effects of treatment on disease may be quantified by observing both

the longitudinal progression of symptoms and the survival time until a clinical event. Analysis of

these outcomes separately may ignore important dependencies, such as the informative censoring of

further symptom data by the event. Therefore, a broad class of joint models for longitudinal and

time-to-event data has been developed. The most flexible such models rely on an underlying latent

variable framework to induce dependence among outcome types. The development of these approaches

has greatly expanded the scope of models to accommodate many data complexities, see Tsiatis and

Davidian (2004) for a review. Yet little attention has been paid to their properties and performance.

A few notable exceptions include work on residuals (Rizopoulos et al., 2010) and specific cases in

which joint modeling may not be justified (Hanson et al., 2011). Our contribution to this literature

concerns the relative contributions of the two classes of data to inference. In particular, we wish

to understand how longitudinal and survival data contribute to learning about model parameters of

greatest scientific interest.

Previous authors (Reich and Hodges, 2008) have explored reparameterizing linear mixed models

to elucidate the roles of data and random effect variance parameters. Their work depends crucially on

use of a normal-normal model for clever manipulations of the matrix expressions to yield separation

of the posterior into interpretable components (Hodges, 1998). We extend that line of inquiry to the

joint modeling setting in which latent effects link a longitudinal submodel to a survival submodel.

For well-behaved posterior distributions (i.e., unimodal and approximately symmetric), infor-

mation content may be reasonably quantified by inverse variance (aka precision). When the prior and

posterior are both proper and available in closed form, precision is accessible, and we attempt to par-

tition this information measure into portions due to the longitudinal and survival data, respectively.

The normal-normal model we consider here is simple enough to allow this approach. However, for

joint models of greater complexity, the posteriors are not generally available analytically, and analysis

must proceed by Markov chain Monte Carlo (MCMC).

First, we motivate the problem using a few empirical results from a complex real data set and
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joint model. Next, we derive expressions posterior variances in a simplified joint model, considering

both latent effects and fixed effects of interest.

Model Notation

Let the vector of longitudinal observations for individual i be denoted yi, the survival out-

come be ti with censoring indicator δi = 1 if the event is observed, and ui be a vector of person-

specific latent variables. We adopt the usual joint modeling assumption that the ui induce all of

the associations between yi and ti, so that they are conditionally independent given ui. Writing

the rest of the parameters as Θ, the specification of a joint distribution for longitudinal and sur-

vival outcomes is simplified since we can write f(yi, ti|ui,Θ) = f(yi|ui,Θ)f(ti|ui,Θ). Collecting

the longitudinal, survival, and latent variables across subjects into Y, T, and U, respectively, we

write the likelihood as f(Y,T|U,Θ) = f(Y|U,Θ)f(T|U,Θ). The joint posterior distribution is

f(U,Θ|Y,T) = f(Y,T|Θ,U)π(Θ,U)∫
f(Y,T|Θ,U)π(Θ,U)d(Θ,U)

and we focus on various marginal posteriors derived from

this. In particular, we are interested in treatment effects in Θ and individual-level parameters in U,

where we wish to quantify the relative contribution of the two data types to the posterior inferences

on these. For example, suppose β12 is an element of Θ that quantifies the effect of treatment on

longitudinal trajectories. We wish to study how its posterior depends on features of the data and

model such as the error variance of both data types, the amount of censoring in the survival outcomes,

and the distribution of the latent variables.

To write the specific Normal-Normal model that we will use below, denote the longitudinal

observations for the ith subject by yi = (yi1, . . . , yini
)′, where yij is observed at time sij , j = 1, . . . , ni.

Assume that the longitudinal observations are normal yij ∼ N(x1ijβ1 + ui, σ
2
1), the log survival times

arise from a normal distribution log(ti) ∼ N(x2iβ2 + αui, σ
2
2), and the scalar latent effects ui are

independently and identically N(0, σ2
u). The design vectors x1ij and x2i contain covariates of interest,

including treatment effects, and β1 and β2 parameterize their effects on the mean of the longitudinal

variables and the median of the log survival times, respectively. We use prior distributions that are

proper, vague, and conjugate if possible.

Results from a Clinical Trial Setting

Our clinical trial data derive from a large Phase III clinical trial of first-line therapy for malig-

nant pleural mesothelioma, a rapidly fatal lung disease. Participants were randomized to one of two

treatment conditions and self-reported their symptom presence and severity weekly during the treat-

ment phase. They were then followed until substantial progression of the disease or death (whichever

occurred first) to determine progression-free survival time. Clinical interest focused on the effects of

treatment on the longitudinal trajectories of symptom presence and severity and on PFS.

Consider the zero-augmented beta (ZAB) distribution developed in previous work (Hatfield

et al., 2011a,b), which characterizes observations on the support Y ∈ {0} ∪ (0, 1) using a three-

parameter distribution having ω = Pr(Y ∈ (0, 1)), µ = E(Y |Y ∈ (0, 1)), and φ a dispersion parameter.

We build regression submodels for ω and µ. In particular, the longitudinal observation yij for the

ith person’s jth observation (at time sij) is governed by logit(ωij) = x0ijβ0 + u0i and logit(µij) =

x1ijβ1 + u1i1 + u1i2sij . The design vectors are x0ij = x1ij = (1, sij , s
2
ij , trti ∗ sij , trti ∗ s2ij), that is,

we assume the time trend is quadratic and the treatment effects are multiplicative, since participants

were randomized to treatment and there are no baseline differences between the two groups. Then

we specify a Weibull distribution for the survival model, which is a two-parameter distribution having

hazard parameter λ and shape parameter γ. We build a regression model for the hazard parameter

log(λi) = x2iβ2 + α1u0i + α2u1i1 + α3u1i2. The design vector is x2i = (1, trti) and we take a simple
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linear combination of the person-specific parameters. These latent variables are assumed to come from

a zero-centered multivariate normal distribution with 3× 3 covariance matrix Σu.

A simple way of approaching the question of attributing information to the two data types for

a given model and dataset is to fit the joint model and compare the resulting posteriors to those from

reduced models that utilize only longitudinal or survival data, respectively. To study the influence of

survival data on the longitudinal treatment effect elements of β0 and β1, we compare their posteriors

estimated from this joint model to one with all the same structure except no Weibull submodel.

To study the influence of longitudinal data on the survival treatment effect element of β2, we must

modify the approach. The survival submodel specified above cannot be fit on its own with the linear

combination of three person-specific effects and only one survival observation per person. Thus, we

modify the approach to use a single random effect, log(λi) = x2iβ2 + ui, which is then scaled by α0

and α1 for addition to the linear predictors of the two longitudinal submodels, respectively. Then we

can fit the survival submodel alone or in the context of the joint model and examine the differences.

Figure 1: Smoothed posterior density estimates for treatment effects in models fit using the longitu-

dinal and survival data separately or jointly.
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The results of these comparisons are shown in Figure 1. This displays the posterior distribution

for the five parameters that represent treatment effects: the linear and quadratic treatment-by-time in-

teractions for symptom presence (left column), the linear and quadratic treatment-by-time interactions

for symptom severity (middle column), and the treatment effect on the hazard of progression/death

(right column). Notice that the addition of survival data impacts the treatment effects in the longi-

tudinal submodels very little (left four panels) compared to the impact of adding longitudinal data to

the esimation of treatment effects in the survival submodel (top right panel). This seems to indicate

that the longitudinal data are more informative in this model.

Learning About Latent Effects
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We turn next to the derivation of analytical expressions in a simplified joint model. In the

following, will use time-independent regression models having only intercepts and treatment effects

for both the longitudinal and survival submodels, that that is, x1ij = x1i = (1, trti)
′ and x2i = (1, trti)

′,

where trti is an indicator of the treatment group of the ith individual. Using to the simple normal-

normal joint model formulation, yij ∼ N(β11+β12trti+ui, σ
2
1) and log(ti) ∼ N(β21+β22trti+αui, σ

2
2).

Notice that by removing the time-dependence of the mean of the longitudinal observations, we can

write ȳi· ∼ N(β11 + β12trti + ui, σ
2
1/ni). For notational simplicity, we define ȳi· = z1i, log(ti) = z2i,

and σ2
1/ni = σ2

1i.

Focusing on the posterior for an individual’s latent parameter ui suppose the survival time is

observed. The conditional mode of ui (conditional on the data z1i, z2i and the remaining parameters

Θ) is

u∗i =

(

z1i − β11 − β12trti
σ2
1i

+
α(z21 − β21 − β22trti)

σ2
2

)

σ2
ui

,

where σ2
ui

=
(

1
σ2

1i

+ α2

σ2

2

+ 1
σ2
u

)−1
. Notice that the posterior mode for uncensored survival observations is

increasing with the sum of scaled residuals of the linear predictors from the longitudinal and survival

submodels. The second derivative of the log posterior is negative everywhere, ∂2 log f(ui|Θ,z1i,z2i)
∂u2

i

=

−σ−2
ui

and the Fisher information is summed precisions, also sensible. The posterior variance of ui
shrinks with greater precision in either of the longitudinal or survival data.

Learning About Fixed Effects

Following previous work (Reich and Hodges, 2008) showing that posteriors depend on the ratio of

sampling to random effect variance, we consider looking for similar expressions in the simple Normal-

Normal model. Consider the longitudinal treatment effect β12, then we are interested obtaining the

posterior of β12 and studying how it depends on z1, z2, and the variances σ2
1, σ

2
2, and σ2

u.

We recall the hierarchical modeling result of Lindley and Smith (1972). For n×p1 response vector

Y, p1-vector of parameters θ1, known n × p1 design matrix A1, and known n × n covariance matrix

C1, let the likelihood be Z ∼ N(A1θ1, C1). Then for second-level p2-vector of parameters θ2, known

design and covariance matrices A2 and C2, let the prior be θ1 ∼ N(A2θ2, C2). The authors showed

that the marginal distribution is Z ∼ N(A1A2θ2, C1+A1C2A
′
1) and the posterior is θ1|z ∼ N(Dd, D)

where D−1 = A′
1C

−1
1 A1 + C−1

2 and d = A′
1C

−1
1 z + C−1

2 A2θ2. Because we assume all the covariance

parameters (including α) are known in the first two cases above, we can apply these results.

To simplify the expressions, we make the following assumptions without loss of generality: ni =

n , ∀i (thus σ2
1i = σ2

1/n) there are equal numbers of subjects in treatment and control groups (i.e., M =

MT ), and the trti covariate is coded so that trti = 1 indicates observations from the treatment group

and trti = −1 from the control group. Then we collect the data into a single 2N -vector, where longitu-

dinal outcomes come first, sorted into treatment then control outcomes, followed by survival outcomes,

similarly sorted: Z = (z11, . . . , z1,N/2, z1,N/2+1, . . . , z1N , z21, . . . , z2,N/2, z2,N/2+1, . . . , z2N )′. The com-

plete (4 + N)-vector of parameters contains both fixed and latent effects θ1 = (β11, β12, β21, β22,u)
′.

The covariance matrix C1 is block diagonal since conditional on ui all the responses are independent;

the upper left block for the longitudinal observations is σ2
1/nIN and the lower right block for the sur-

vival observations is σ2
2IN . We place independent normal priors on (β1,β2)

′ with mean µ = (µ1,µ2)
′

and with variances σ2
β1

and σ2
β2
, respectively. We use another independent normal prior distribution

on u, centered at 0 with common variance σ2
u. Then the joint posterior covariance matrix on (β,u)′

can be partitioned into a 4 × 4 submatrix V11 governing the fixed effects, an N × N submatrix V22

for the random effects, and off-diagonal submatrices containing the covariances between these two

types of parameters. The properties of multivariate normal distributions make it simple to obtain the

marginal posterior covariances by taking corresponding diagonal elements of this matrix. Thus we
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find the posterior variance of β12 to be

(1)
P2 − c24NP−1

u

P1P2 −NP−1
u

[

c24P1 + c23P2

]

where P1 =

(

Nn
σ2

1

+ 1
σ2

β1

)

, P2 =

(

N
σ2

2

+ 1
σ2

β2

)

, Pu =
(

n
σ2

1

+ α2

σ2

2

+ 1
σ2
u

)

, c3 = n
σ2

1

, and c4 = α
σ2

2

. If we

assume improper flat priors on the βs so that 1
σ2

β2

, 1
σ2

β1

→ 0, the variance of β12 simplifies to
nσ2

u+σ2

1

Nn ,

which surprisingly does not involve σ2
2 at all.

We compare the expression for β12’s posterior variance in the joint model to the case of fitting

a longitudinal-data-only model of the same form. Again following the L&S notation, the elements

A1, C1, θ1, and C2 are simply the reduced forms obtained by deleting the longitudinal data and

parameters. Following the same procedure above, we obtain the posterior variance of β12
[

P1 −Nc23

(

n

σ2
1

+
1

σ2
u

)−1
]−1

.

However, we see that we can obtain the same result by setting α = 0 in (1) above, since Pu becomes
(

n
σ2

1

+ 1
σ2
u

)

and P2 cancels out of the remaining terms.

Then we consider the variance reduction achieved by adding survival data to the longitudinal

data in this setting, i.e., the ratio of V ar(β12|α,Z) to (1) to V ar(β12|α = 0,Z). Figure 2 displays this

ratio as it depends on σ2
2 and σ2

β1
= σ2

β2
= σ2

β for three values of α, where we have fixed the remaining

conditioning variables (σ2
1 = 1, n = 2, N = 10). In this figure, small values of the ratio represent

the most benefit of adding survival data to the posterior variance of the longitudinal treatment effect,

since it will be small compared to the case of no survival information. In the left panel (α = 1), the

dependence of the longitudinal treatment effect variance on survival error variance is minimal; at the

minimum, the ratio is only 0.9. In the right panel (α = 10), more benefit is gained by including the

survival data– the minimum ratio is 0.6. We can we see that the minimum variance is achieved when

σ2
2 = 0, which is sensible since this represents survival data that perfectly determine each ui. The

joint minimum is achieved when the prior variance is neither too large nor too small, σ2
β = α/N . At

this value of the prior variance, the dependence on σ2
2 is greatest (i.e., the gradient in the direction of

σ2
2 is steepest).

Figure 2: Ratio of posterior variance of longitudinal treatment effect in joint model to α = 0 separate

model.
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However, we may not wish to constrain the prior variances in both parts of the model to be

equal. Figure 3 displays the same ratio where σ2
β2

= 2 is fixed and σ2
β1

varies along the x axis. In

this figure, we clearly see that larger values of α lead to smaller ratios (i.e., greater benefit of adding

survival) and that the gradient in the direction of the survival error variance (y direction in this figure)

depends on the variance of the prior on β12. Clearly the minimum in σ2
2 will again be at 0, but the

variance does not reach a unique minimum in (σ2
β1
, σ2

2) jointly.
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Figure 3: Ratio of posterior variance of longitudinal treatment effect in joint model to α = 0 separate

model.
α = 1
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Conclusion

We have derived some expressions for the contributions of the two types of data to the posteriors of

model parameters of interest in joint models. These show that the complex interactions of multiple

variance parameters– including those for longitudinal and survival errors, latent parameters, and

priors– interact in complex ways to determine the posterior variances of treatment effects.

The modeling simplifications required to make analytical progress have taken the models far from the

complex joint models frequently seen in the literature. Therefore, future work will seek to extend this

partitioning of information to more general modeling settings using simulation approaches.

REFERENCES (RÉFERENCES)
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