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Generalized Logistic Models and its orthant tail dependence
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1. The model

Let £ (Z|W) denotes the conditional distribution of a random variable or vector Z given another
random variable or vector W. For the vectors X; = (Xj1,...,X;4), 7 =1,...,¢q,and S = (S1,...,5;),
defined on the same probability space, we shall assume that:

(a) £((X1,....,X) 8) = [T}, £ (X;18),

(b)L (X;8) = L (X;1S;),

—1/0; —1/a;
; ()" ) |
c X <xlS;) = Cile sy € , X , j = 1,...,d, where
(c) P(ﬂz Xji < |SJ) C; it i >0 1,...d, wh

Cj’s are max-stable copulas and {f;;,j = 1,...,¢,% = 1,...,d} are non-negative constants such that
23:1 Bji=1,1=1,...,d,

(d) E (e‘tSJ') =e 7 ¢ >0, j=1,...,q, where a;’s are constants in (0, 1]
and

() £(8) = IT%, £(S)).

Thus every Xj; is a scale mixture with mixing variable ﬁjiSj% and X, 7 = 1,...,q, are conditionally
independent given S.

Scale mixtures have been studied and used in a variety of applications ( Marshall and Olkin (1988,
[7]), Joe and Hu (1996, [5]) and Fougeres et al. (2009, [2]), Li (2009, [6])).

We shall consider here a componentwise maxima model from the X;’s. From this model we derive
a new family of copulas and analize its orthant tail dependence by computing the multivariate tail
dependence coefficients considered in Li (2009, [6])). Finally we apply the results to the particular
case of C; being the copula arising from the distribution of the variables in a M4 process (Smith and
Weissman, 1996, [10]).

Proposition 1 If the random wvectors X;, j = 1,...,q, and S satisfy the conditions (a)-(e) then
q

Y = (Y3,...,Yy) defined by Y; = \/ Xji, 1 =1,...,d, has multivariate extreme value distribution with
j=1
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unit Frechet margins and copula

g /Oé‘ aj
(1) CY (u1)7ud) :exp —Z (— lnC] (6(ﬂjlln’lt1)1/ ]7'”76_(_Bjdlnud)1 ]))

q
Jj=1

Proof. To obtain Cy we just apply the conditional independence of the X;’s followed by the
max-stability of C;’s and the aj-stability of each Sj, as follows:

d q d
P (ﬂ {Y; S J}z}> = /P ﬂ {in S xz} ‘S =s | dS (81,...,8q) =
i=1

j=1i=1

/ﬁCj ei<5711>7 Sj,...,e<‘%>1/%sj dS (s1, ..., 84) =
j=1

&

PIERESY

q en 71/04‘7 en 71/04‘7
| —mc: fi1 Fjid

| | exp nCj|e e

j=1

For each j and ¢, Xj; is a positive aj-stable size mixture of a Fréchet distribution with location 3;;,
scale (Bj;a; and shape parameter a; and has itself Fréchet distribution with same location and the
same right end point, but scale §j; and shape parameter 1. Since 25:1 Bji=1,1=1,...,d, each Y; has
unit Fréchet distribution. The max-stability of Cy follows from its expression and the max-stability
of the Cj’s. m

We now discuss some particular cases of (1) that has been explored.
(I) If g=1then p1; =1,1=1,...d, and

Cy (u1, ..., uq) = exp {— (—ln Cy <e’(*1n“1)1/a1,_,,76*(*lnud)l/a1))a1}

is a generalisation of the Archimedean copula (Joe, 1997, [4]), which for the particular case of the
product copula C = II leads to the Gumbel-Hougaard or logistic copula. The dependence properties
d

of the special case of C1(uy,...,uq) = H Cspy(ub, uf) Huf“’i, where Cyy 4y, 1 < s <t <d, are

1<s<t<d i=1
bivariate copulas and (d — 1)p; + piv; = 1, 1 = 1, ..., d, were analysed in Joe and Hu (1996, [5]).

(AN) If C; =11, j =1,...,q, then

ﬁ 7({3071)71/04 7(/;7[1)71/04]' aj Z Z 2 “1/ay a;
expq — | —InCj [ e \V! sy € NI exp{ — <> ,
j=1 o\ i

Jj=1

which leads to an asymmetric logistic copula

d ;i
(2) Cy (u1, ..., uq) = exp —Z ( (—B;i 1nui>—1/aj>

j=1 \i=1
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In (2), if we take oj = o, j = 1,...,¢ < 400, we find an analogous mixture of extreme value dis-
tributions to those considered in Fougeres et al. (2009, [2]) by departing just from a random vector
X = (X1,...,Xy) satisfying

d
L(Xl8) =[] £(xils)

and

x_,uq 71/77, )
P (X; <z|S) = exp{— Zcﬂ ( + v - ) },oi=1,..,d.

)

That this, in this different approach, conditionally on S, the vector X has independent margins and
each margin is a power mixture of an extreme value distribution with mixing variable 23:1 ¢jiSj,
where the c;; are non-negartive constants.

(IIT) Assume now, in (2), that each j corresponds to an element A of the set S, the class of all
nonempty subsets of D = {1,...,d}. If 84; = 0 for each i ¢ A then the copula (2) becomes

d aA
(3) Cy (u1,...,uq) = exp {— Z (Z (—Bai hlui)l/a“) } 7

ACS \i€A

with > 4 -gB4i = 1,7 =1,...,d. This is the asymmetric logistic model considered in Tawn (1990, [11]),
by following a different probabilistic approach. More generally, by applying the same interpretation
of the constants (j; in (1), we obtain

(4) Cy (ul, ey Ug) = €XP { Z (— InCy (e(ﬂAil(A) lnul)l/ A7 . e—(—ﬂAis(A) lnud)l/ A)) } ’

ACS

where C'4’s are copulas with different dimensions and we denote by (i1(A), ..., is(A)) the sub-vector of
(1,...,d) corresponding to indices in A. In particular, if we begin with one copula C; = C, j =1,...,q,
then Cy, A C S, are all the sub-copulas of C.

(IV) Finally, let us suppose that 5;; = 8;, i =1,...,d, in (1). Then

(5) Cy (ug, .. H exp{ (ln Cj (6_(_ln“1)1/aj ey e_(_ln“d)l/aj))aj ﬁj} ,

with Z?:l B; = 1, that is, C'y is a geometric mean of mixtures of powers of multivariate extreme value
distributions. The particular case of the weighted geometric mean Cy (uy,u2) = (ug Aug)? (ugug) =2
is due to Cuadras and Augé (1981, [1]).

2. Orthant tail dependence

For a random vector Y = (Y7,...,Yy;) with continuos margins Fi, ..., Fy and copula C, let the
bivariate (upper) tail dependence parameters defined by

(6) Moy = Ao = lion P (Fy (Y;) > ulFy (i) > w), 1 <5 <t<d.
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The tail dependence is a copula based measure and it holds

In G (1
P L CUA D)

ull Inu

(7) Ao
where Cf, 4 is the copula of the sub-vector (Ys,Y;) ( Joe (1997, [4]), Nelsen (1999, [8])).

To characterise the relative strength of extremal dependence with respect to a particular subset
of random variables of Y one can use conditional orthant tail probabilities of Y given that the
components with indices in the subset J are extreme. The tail dependence of bivariate copulas can
be extended as done in Schmid and Schmidt (2007) ([9]) and Li (2009) ([6]).

For 0 #J C D =1{1,..,d}, let

(8) A()_A(C)—hmP N {E () > u} | () {F; () > u}
j¢J JjeJ

If for some @ # J C {1,...,d} the parameter ASC) exists and is positive then we say that Y is
(upper) orthant tail dependent.

()
We have )\SC) = ({Csj), if )\(C“’ # 0 and the relation (7) between the tail dependence parameter
A

{s

and the bivariate copula can also be generalized by

> ()T InCy (ua)

Q) . DP#£AcCD
9) A = tim ,
T Z (—D)A-1I Oy ()
P£ACT

where C'4 denotes the sub-copula of C' corresponding to margins with indices in A and and u4 the
|A|-dimensional vector (u,...,u). By applying this relation and the max-stability of the copulas Cj,
we get the following result.

Proposition 2 For a copula C' defined by (1), it holds
(a)

1/aj l/a (671
Z (1)1 <— InCj 4 (e_ﬁﬂ ’ oye P > >
q 1o, 1a; a;’
Y (cpdn (_mcj,A (Mﬂ e ) )
; A

where Cj 4 denotes the sub-copula of C; corresponding to the margins with indices in A.

(10) J =

(b) If C; =11, for each j =1, ...,q, then

> ey (i)

(¢) _ J=10#£AcCD i€A
J

E oy

i€EA

(11) A
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The tail dependence result in (10) depends on the mixing variables through the parameters «;,
even for the case of ¢ = 1, that is the global dependence added by the mixing variables doesn’t vanish
in extremes of maxima. This contrast with the result in Li (2009, [6]), where the scale mixture of
MEV distributions (RX1, ..., RXy) is considered with the mixing variable R satisfying %((66 ic:))
as t tends to oo, and ¢ > 1, a > 0. In this case the upper tail dependence parameters are exactly the

(6%
9

— C
same as the parameters of the MEV distribution without mixing.

We remark that, for 8j; = §;, ¢ =1, ...,d, the numerator in (10) is, for each A C D,

(Ca) _ 1 (Cj.a)
N =D BN

Jj=1

)

that is, the tail dependence parameter AF{SA is a linear convex combination of the corresponding tail

dependence parameters for the sub-copulas C; 4 of Cj, j =1,...,q.
The result in (11) leads to

q o
XOy =23 (8 +8{)"

=1

extending the the known result

(12) Al

sy =225

corresponding to ¢ = 1 (Joe (1997, [4]), Nelsen (1999, [8])). The result in (10) enables to extend the
equation (12) for other copulae C; than the product copula as

©) _ (1) ya
(13) Moy =2—@=25™

3. Example

We will suppose that C; = C, j =1,...,d, with

0o oo d
Cluy,..ua) =[] T] (/\ u;”'ﬂ), uj €[0,1], j=1,...d,

I=1 k=—oco \i=1
where {ajj,1 > 1, —00 < k < 00,1 < j < d}, are nonnegative constants satisfying
o oo
> awg=1 forj=1,....d
=1 k=—0

That copula arises from the common distribution of the variables of an M4 process (Smith and Weiss-
man (1996, [10])).
Then the copula in (1) becomes

o] o] d a;j
(14) CY (ul, ...,ud) =exp 4§ — Z (Z Z \/ (_ﬁjia?;ji lnui)l/aj)

j=1 \I=1 k=—c0 i=1
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By applying the result in Proposition 2.1. (a), we obtain for the numerator in (10)

A Z S (cM- 1(2 ) \/(al,m J))aj.

j=10£ACD =1 k=—oc0 i€ A

For the bivariate tail dependence it holds

{st} _2_2 Z Z(al’“ﬁjs ’ valktﬁjl’t/aj)aj’

=1 k=—00 j=1

o o
which, for the case ¢ = 1 leads to the result Ags t}) =2 - Z Z (aiks V aige) in Heffernan et al.
=1 k=—o00
(2007, [3]).
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