Generalized Logistic Models and its orthant tail dependence

Ferreira, Helena

University of Beira Interior, Department of Mathematics Avenida Marquês d'Ávila e Bolama 6200-001 Covilhã, Portugal E-mail: helenaf@ubi.pt

Pereira, Luísa University of Beira Interior, Department of Mathematics Avenida Marquês d'Ávila e Bolama 6200-001 Covilhã, Portugal E-mail: lpereira@ubi.pt

1. The model

Let $\mathcal{L}(Z|W)$ denotes the conditional distribution of a random variable or vector Z given another random variable or vector W. For the vectors $\mathbf{X}_j = (X_{j,1}, \ldots, X_{j,d}), j = 1, ..., q$, and $\mathbf{S} = (S_1, \ldots, S_q)$, defined on the same probability space, we shall assume that:

(a)
$$\mathcal{L}((\mathbf{X}_1, ..., \mathbf{X}_q) | \mathbf{S}) = \prod_{j=1}^q \mathcal{L}(\mathbf{X}_j | \mathbf{S}),$$

(b)
$$\mathcal{L}(\mathbf{X}_j|\mathbf{S}) = \mathcal{L}(\mathbf{X}_j|S_j),$$

(c) $P\left(\bigcap_{i=1}^{d} X_{ji} \le x_i | S_j\right) = C_j \left(e^{-\left(\frac{x_1}{\beta_{j1}}\right)^{-1/\alpha_j} S_j}, ..., e^{-\left(\frac{x_d}{\beta_{jd}}\right)^{-1/\alpha_j} S_j}\right), x_j > 0, j = 1, ..., d, \text{ where}$

 C_j 's are max-stable copulas and $\{\beta_{ji}, j = 1, ..., q, i = 1, ..., d\}$ are non-negative constants such that $\sum_{j=1}^{q} \beta_{ji} = 1, i = 1, ..., d,$

(d) $E(e^{-tS_j}) = e^{-t^{\alpha_j}}, t \ge 0, j = 1, ..., q$, where α_j 's are constants in (0, 1]

and

(e)
$$\mathcal{L}(\mathbf{S}) = \prod_{j=1}^{q} \mathcal{L}(S_j).$$

Thus every X_{ji} is a scale mixture with mixing variable $\beta_{ji}S_j^{\alpha_j}$ and \mathbf{X}_j , j = 1, ..., q, are conditionally independent given **S**.

Scale mixtures have been studied and used in a variety of applications (Marshall and Olkin (1988, [7]), Joe and Hu (1996, [5]) and Fougères et al. (2009, [2]), Li (2009, [6])).

We shall consider here a componentwise maxima model from the \mathbf{X}_j 's. From this model we derive a new family of copulas and analize its orthant tail dependence by computing the multivariate tail dependence coefficients considered in Li (2009, [6])). Finally we apply the results to the particular case of C_j being the copula arising from the distribution of the variables in a M4 process (Smith and Weissman, 1996, [10]).

Proposition 1 If the random vectors \mathbf{X}_j , j = 1, ..., q, and \mathbf{S} satisfy the conditions (a)-(e) then $\mathbf{Y} = (Y_1, \ldots, Y_d)$ defined by $Y_i = \bigvee_{j=1}^q X_{ji}$, i = 1, ..., d, has multivariate extreme value distribution with

unit Frechet margins and copula

(1)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \exp\left\{-\sum_{j=1}^q \left(-\ln C_j \left(e^{-(-\beta_{j1}\ln u_1)^{1/\alpha_j}}, ..., e^{-(-\beta_{jd}\ln u_d)^{1/\alpha_j}}\right)\right)^{\alpha_j}\right\}.$$

Proof. To obtain $C_{\mathbf{Y}}$ we just apply the conditional independence of the \mathbf{X}_j 's followed by the max-stability of C_j 's and the α_j -stability of each S_j , as follows:

$$P\left(\bigcap_{i=1}^{d} \{Y_i \le x_i\}\right) = \int P\left(\bigcap_{j=1}^{q} \bigcap_{i=1}^{d} \{X_{ji} \le x_i\} | \mathbf{S} = \mathbf{s}\right) d\mathbf{S}\left(s_1, \dots, s_q\right) =$$
$$\int \prod_{j=1}^{q} C_j\left(e^{-\left(\frac{x_1}{\beta_{j1}}\right)^{-1/\alpha_j} s_j}, \dots, e^{-\left(\frac{x_d}{\beta_{jd}}\right)^{-1/\alpha_j} s_j}\right) d\mathbf{S}\left(s_1, \dots, s_q\right) =$$
$$\prod_{j=1}^{q} \exp\left\{-\left(-\ln C_j\left(e^{-\left(\frac{x_1}{\beta_{j1}}\right)^{-1/\alpha_j}}, \dots, e^{-\left(\frac{x_d}{\beta_{jd}}\right)^{-1/\alpha_j}}\right)\right)^{\alpha_j}\right\}.$$

For each j and i, X_{ji} is a positive α_j -stable size mixture of a Fréchet distribution with location β_{ji} , scale $\beta_{ji}\alpha_j$ and shape parameter α_j and has itself Fréchet distribution with same location and the same right end point, but scale β_{ji} and shape parameter 1. Since $\sum_{j=1}^{q} \beta_{ji} = 1$, i = 1, ..., d, each Y_i has unit Fréchet distribution. The max-stability of $C_{\mathbf{Y}}$ follows from its expression and the max-stability of the C_j 's.

We now discuss some particular cases of (1) that has been explored.

(I) If q = 1 then $\beta_{1i} = 1, i = 1, ...d$, and

$$C_{\mathbf{Y}}(u_1,...,u_d) = \exp\left\{-\left(-\ln C_1\left(e^{-(-\ln u_1)^{1/\alpha_1}},...,e^{-(-\ln u_d)^{1/\alpha_1}}\right)\right)^{\alpha_1}\right\}$$

is a generalisation of the Archimedean copula (Joe, 1997, [4]), which for the particular case of the product copula $C_1 = \Pi$ leads to the Gumbel-Hougaard or logistic copula. The dependence properties of the special case of $C_1(u_1, ..., u_d) = \prod_{1 \le s < t \le d} C_{\{s,t\}}(u_s^{p_s}, u_t^{p_t}) \prod_{i=1}^d u_i^{p_i\nu_i}$, where $C_{\{s,t\}}$, $1 \le s < t \le d$, are bivariate copulas and $(d-1)p_i + p_i\nu_i = 1$, i = 1, ..., d, were analysed in Joe and Hu (1996, [5]).

(II) If $C_j = \Pi, j = 1, ..., q$, then

$$\prod_{j=1}^{q} \exp\left\{-\left(-\ln C_{j}\left(e^{-\left(\frac{x_{1}}{\beta_{j1}}\right)^{-1/\alpha_{j}}}, ..., e^{-\left(\frac{x_{d}}{\beta_{jd}}\right)^{-1/\alpha_{j}}}\right)\right)^{\alpha_{j}}\right\} = \exp\left\{-\sum_{j=1}^{q}\left(\sum_{i=1}^{d}\left(\frac{x_{i}}{\beta_{ji}}\right)^{-1/\alpha_{j}}\right)^{\alpha_{j}}\right\},$$

which leads to an asymmetric logistic copula

(2)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \exp\left\{-\sum_{j=1}^q \left(\sum_{i=1}^d \left(-\beta_{ji} \ln u_i\right)^{-1/\alpha_j}\right)^{\alpha_j}\right\}.$$

In (2), if we take $\alpha_j = \alpha$, $j = 1, ..., q \leq +\infty$, we find an analogous mixture of extreme value distributions to those considered in Fougères et al. (2009, [2]) by departing just from a random vector $\mathbf{X} = (X_1, ..., X_d)$ satisfying

$$\mathcal{L}\left(\mathbf{X}_{j}|\mathbf{S}\right) = \prod_{i=1}^{d} \mathcal{L}\left(X_{i}|\mathbf{S}\right)$$

and

$$P(X_{i} \le x | \mathbf{S}) = \exp\{-\left(\sum_{j=1}^{q} c_{ji} S_{j}\right) \left(1 + \gamma_{i} \frac{x - \mu_{i}}{\sigma_{i}}\right)^{-1/\gamma_{i}}\}, \quad i = 1, ..., d.$$

That this, in this different approach, conditionally on **S**, the vector **X** has independent margins and each margin is a power mixture of an extreme value distribution with mixing variable $\sum_{j=1}^{q} c_{ji}S_{j}$, where the c_{ji} are non-negarive constants.

(III) Assume now, in (2), that each j corresponds to an element A of the set S, the class of all nonempty subsets of $D = \{1, ..., d\}$. If $\beta_{Ai} = 0$ for each $i \notin A$ then the copula (2) becomes

(3)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \exp\left\{-\sum_{A \subset \mathcal{S}} \left(\sum_{i \in A}^d \left(-\beta_{Ai} \ln u_i\right)^{-1/\alpha_A}\right)^{\alpha_A}\right\},$$

with $\sum_{A \subset S} \beta_{Ai} = 1, i = 1, ..., d$. This is the asymmetric logistic model considered in Tawn (1990, [11]), by following a different probabilistic approach. More generally, by applying the same interpretation of the constants β_{ji} in (1), we obtain

(4)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \exp\left\{\sum_{A \subset \mathcal{S}} \left(-\ln C_A \left(e^{-\left(-\beta_{A i_1(A)} \ln u_1\right)^{1/\alpha_A}}, ..., e^{-\left(-\beta_{A i_s(A)} \ln u_d\right)^{1/\alpha_A}}\right)\right)^{\alpha_A}\right\},$$

where C_A 's are copulas with different dimensions and we denote by $(i_1(A), ..., i_s(A))$ the sub-vector of (1, ..., d) corresponding to indices in A. In particular, if we begin with one copula $C_j = C, j = 1, ..., q$, then $C_A, A \subset S$, are all the sub-copulas of C.

(IV) Finally, let us suppose that $\beta_{ji} = \beta_j$, i = 1, ..., d, in (1). Then

(5)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \prod_{j=1}^{q} \exp\left\{-\left(\ln C_j\left(e^{-(-\ln u_1)^{1/\alpha_j}}, ..., e^{-(-\ln u_d)^{1/\alpha_j}}\right)\right)^{\alpha_j} \beta_j\right\},$$

with $\sum_{j=1}^{q} \beta_j = 1$, that is, $C_{\mathbf{Y}}$ is a geometric mean of mixtures of powers of multivariate extreme value distributions. The particular case of the weighted geometric mean $C_{\mathbf{Y}}(u_1, u_2) = (u_1 \wedge u_2)^{\beta_1} (u_1 u_2)^{1-\beta_1}$ is due to Cuadras and Augé (1981, [1]).

2. Orthant tail dependence

For a random vector $\mathbf{Y} = (Y_1, \dots, Y_d)$ with continuous margins F_1, \dots, F_d and copula C, let the bivariate (upper) tail dependence parameters defined by

(6)
$$\lambda_{\{s,t\}}^{(\mathbf{Y})} \equiv \lambda_{\{s,t\}}^{(C)} = \lim_{u \uparrow 1} P\left(F_s\left(Y_s\right) > u | F_t\left(Y_t\right) > u\right), \ 1 \le s < t \le d.$$

The tail dependence is a copula based measure and it holds

(7)
$$\lambda_{\{s,t\}}^{(C)} = 2 - \lim_{u \uparrow 1} \frac{\ln C_{\{s,t\}}(u,u)}{\ln u},$$

where $C_{\{s,t\}}$ is the copula of the sub-vector (Y_s, Y_t) (Joe (1997, [4]), Nelsen (1999, [8])).

To characterise the relative strength of extremal dependence with respect to a particular subset of random variables of \mathbf{Y} one can use conditional orthant tail probabilities of \mathbf{Y} given that the components with indices in the subset J are extreme. The tail dependence of bivariate copulas can be extended as done in Schmid and Schmidt (2007) ([9]) and Li (2009) ([6]).

For $\emptyset \neq J \subset D = \{1, ..., d\}$, let

(8)
$$\lambda_J^{(\mathbf{Y})} \equiv \lambda_J^{(C)} = \lim_{u \uparrow 1} P\left(\bigcap_{j \notin J} \left\{F_j\left(Y_j\right) > u\right\} | \bigcap_{j \in J} \left\{F_j\left(Y_j\right) > u\right\}\right)$$

If for some $\emptyset \neq J \subset \{1, ..., d\}$ the parameter $\lambda_J^{(C)}$ exists and is positive then we say that **Y** is (upper) orthant tail dependent.

We have $\lambda_J^{(C)} = \frac{\lambda_{\{s\}}^{(C)}}{\lambda_{\{s\}}^{(C_J)}}$, if $\lambda_{\{s\}}^{(C_J)} \neq 0$ and the relation (7) between the tail dependence parameter

and the bivariate copula can also be generalized by

(9)
$$\lambda_{J}^{(C)} = \lim_{u \uparrow 1} \frac{\sum_{\substack{\emptyset \neq A \subset D}} (-1)^{|A|-1} \ln C_{A}(\mathbf{u}_{A})}{\sum_{\substack{\emptyset \neq A \subset J}} (-1)^{|A|-1} \ln C_{A}(\mathbf{u}_{A})},$$

where C_A denotes the sub-copula of C corresponding to margins with indices in A and \mathbf{u}_A the |A|-dimensional vector (u, ..., u). By applying this relation and the max-stability of the copulas C_j , we get the following result.

Proposition 2 For a copula C defined by (1), it holds (a)

(10)
$$\lambda_{J}^{(C)} = \frac{\sum_{j=1}^{q} \sum_{\emptyset \neq A \subset D} (-1)^{|A|-1} \left(-\ln C_{j,A} \left(e^{-\beta_{j1}^{1/\alpha_{j}}}, ..., e^{-\beta_{jd}^{1/\alpha_{j}}} \right)_{A} \right)^{\alpha_{j}}}{\sum_{j=1}^{q} \sum_{\emptyset \neq A \subset J} (-1)^{|A|-1} \left(-\ln C_{j,A} \left(e^{-\beta_{j1}^{1/\alpha_{j}}}, ..., e^{-\beta_{jd}^{1/\alpha_{j}}} \right)_{A} \right)^{\alpha_{j}}},$$

where $C_{j,A}$ denotes the sub-copula of C_j corresponding to the margins with indices in A.

(b) If $C_j = \Pi$, for each j = 1, ..., q, then

(11)
$$\lambda_{J}^{(C)} = \frac{\sum_{j=1}^{q} \sum_{\emptyset \neq A \subset D} (-1)^{|A|-1} \left(\sum_{i \in A} \beta_{ji}^{1/\alpha_{j}}\right)^{\alpha_{j}}}{\sum_{j=1}^{q} \sum_{\emptyset \neq A \subset J} (-1)^{|A|-1} \left(\sum_{i \in A} \beta_{ji}^{1/\alpha_{j}}\right)^{\alpha_{j}}}.$$

The tail dependence result in (10) depends on the mixing variables through the parameters α_j , even for the case of q = 1, that is the global dependence added by the mixing variables doesn't vanish in extremes of maxima. This contrast with the result in Li (2009, [6]), where the scale mixture of MEV distributions $(RX_1, ..., RX_d)$ is considered with the mixing variable R satisfying $\frac{E(e^{-ctR})}{E(e^{-tR})} \rightarrow c^{-\alpha}$, as t tends to ∞ , and $c \ge 1$, $\alpha > 0$. In this case the upper tail dependence parameters are exactly the same as the parameters of the MEV distribution without mixing.

We remark that, for $\beta_{ji} = \beta_j$, i = 1, ..., d, the numerator in (10) is, for each $A \subset D$,

$$\lambda_{\{s\}}^{(C_A)} = \sum_{j=1}^q \beta_j \lambda_{\{s\}}^{(C_{j,A})}$$

that is, the tail dependence parameter $\lambda_{\{s\}}^{(C_A)}$ is a linear convex combination of the corresponding tail dependence parameters for the sub-copulas $C_{j,A}$ of C_j , j = 1, ..., q.

The result in (11) leads to

$$\lambda_{\{s,t\}}^{(C)} = 2 - \sum_{j=1}^{q} \left(\beta_{js}^{1/\alpha_j} + \beta_{jt}^{1/\alpha_j} \right)^{\alpha_j},$$

extending the known result

(12)
$$\lambda_{\{s,t\}}^{(C)} = 2 - 2^{\alpha},$$

corresponding to q = 1 (Joe (1997, [4]), Nelsen (1999, [8])). The result in (10) enables to extend the equation (12) for other copulae C_1 than the product copula as

(13)
$$\lambda_{\{s,t\}}^{(C)} = 2 - (2 - \lambda_{\{s,t\}}^{(C_1)})^{\alpha}.$$

3. Example

We will suppose that $C_j = C, j = 1, ..., d$, with

$$C(u_1, ..., u_d) = \prod_{l=1}^{\infty} \prod_{k=-\infty}^{\infty} \left(\bigwedge_{i=1}^d u_i^{a_{lki}} \right), \ u_j \in [0, 1], \ j = 1, ..., d,$$

where $\{a_{lkj}, l \ge 1, -\infty < k < \infty, 1 \le j \le d\}$, are nonnegative constants satisfying

$$\sum_{l=1}^{\infty} \sum_{k=-\infty}^{\infty} a_{lkj} = 1 \quad \text{for } j = 1, \dots, d.$$

That copula arises from the common distribution of the variables of an M4 process (Smith and Weissman (1996, [10])).

Then the copula in (1) becomes

(14)
$$C_{\mathbf{Y}}(u_1, ..., u_d) = \exp\left\{-\sum_{j=1}^q \left(\sum_{l=1}^\infty \sum_{k=-\infty}^\infty \bigvee_{i=1}^d \left(-\beta_{ji} a_{lki}^{\alpha_j} \ln u_i\right)^{1/\alpha_j}\right)^{\alpha_j}\right\}.$$

By applying the result in Proposition 2.1. (a), we obtain for the numerator in (10)

$$\lambda_{\{s\}}^{(C_{\mathbf{Y}})} = \sum_{j=1}^{q} \sum_{\emptyset \neq A \subset D} (-1)^{|A|-1} \left(\sum_{l=1}^{\infty} \sum_{k=-\infty}^{\infty} \bigvee_{i \in A} \left(a_{lki} \beta_{ji}^{1/\alpha_j} \right) \right)^{\alpha_j}.$$

For the bivariate tail dependence it holds

$$\lambda_{\{s,t\}}^{(C_{\mathbf{Y}})} = 2 - \sum_{l=1}^{\infty} \sum_{k=-\infty}^{\infty} \sum_{j=1}^{q} \left(a_{lks} \beta_{js}^{1/\alpha_j} \vee a_{lkt} \beta_{jt}^{1/\alpha_j} \right)^{\alpha_j},$$

which, for the case q = 1 leads to the result $\lambda_{\{s,t\}}^{(C_{\mathbf{Y}})} = 2 - \sum_{l=1}^{\infty} \sum_{k=-\infty}^{\infty} (a_{lks} \vee a_{lkt})$ in Hefferman et al.

(2007, [3]).

Acknowledgments: This research was supported by the research unit "Centro de Matemática" of the University of Beira Interior and the research project PTDC/MAT/108575/2008 through the Foundation for Science and Technology (FCT) and co-financed by FEDER/COMPETE.

References

- Cuadras, C.M. and Augé, J (1981). A continuous general multivariate distribution and its properties. Comm. Statist. A - Theory Methods 10, 339-353.
- [2] Fougères, A.-L., Nolan, J.P. and Rootzén, H. (2009). Models for dependent extremes using scale mixtures. Scandinavian Journal of Statistics 36, 42-59.
- [3] Heffernan, J. E., Tawn, J. A., Zhang, Z. (2007). Asymptotically (in)dependent multivariate maxima of moving maxima processes, Extremes, 10, 57-82.
- [4] Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall, London.
- [5] Joe, H. and Hu, T. (1996). Multivariate distributions from mixtures of max-infinitely divisible distributions. Journal of Multivariate Analysis 57, 240-265.
- [6] Li, H. (2009). Orthant tail dependence of multivariate extreme value distributions. Journal of Multivariate Analysis 100, 243-256.
- [7] Marshall, A.W., Olkin, I. (1988). Families of multivariate distributions, J. Amer. Statist. Assoc. 83, 834-841.
- [8] Nelsen R. B. (1999). An Introduction to Copulas. Springer, New York.
- [9] Schmid, F., Schmidt, R. (2007). Multivariate conditional versions of Spearman's rho and related measures of tail dependence. J. Multivariate Anal., 98, 1123-1140.
- [10] Smith, R.L., Weissman, I. (1996). Characterization and estimation of the multivariate extremal index. Technical Report, Univ. North, Carolina.
- [11] Tawn, J. (1990). Modelling multivariate extreme value distributions. Biometrika 77, 2, 245-253.