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1. The model

Let L (Z|W ) denotes the conditional distribution of a random variable or vector Z given another

random variable or vector W . For the vectors Xj = (Xj,1, . . . , Xj,d), j = 1, ..., q, and S = (S1, . . . , Sq),

defined on the same probability space, we shall assume that:

(a) L ((X1, ...,Xq) |S) =
∏q

j=1 L (Xj |S),

(b)L (Xj |S) = L (Xj |Sj),

(c) P
(

⋂d
i=1 Xji ≤ xi|Sj

)

= Cj



e
−

(

x1
βj1

)−1/αj
Sj

, ..., e
−

(

xd
βjd

)−1/αj
Sj



, xj > 0, j = 1, ..., d, where

Cj ’s are max-stable copulas and {βji, j = 1, ..., q, i = 1, ..., d} are non-negative constants such that
∑q

j=1 βji = 1, i = 1, ..., d,

(d) E
(

e−tSj
)

= e−tαj
, t ≥ 0, j = 1, ..., q, where αj ’s are constants in (0, 1]

and

(e) L (S) =
∏q

j=1 L (Sj).

Thus every Xji is a scale mixture with mixing variable βjiS
αj

j and Xj , j = 1, ..., q, are conditionally

independent given S.

Scale mixtures have been studied and used in a variety of applications ( Marshall and Olkin (1988,

[7]), Joe and Hu (1996, [5]) and Fougères et al. (2009, [2]), Li (2009, [6])).

We shall consider here a componentwise maxima model from the Xj ’s. From this model we derive

a new family of copulas and analize its orthant tail dependence by computing the multivariate tail

dependence coefficients considered in Li (2009, [6])). Finally we apply the results to the particular

case of Cj being the copula arising from the distribution of the variables in a M4 process (Smith and

Weissman, 1996, [10]).

Proposition 1 If the random vectors Xj, j = 1, ..., q, and S satisfy the conditions (a)-(e) then

Y = (Y1, . . . , Yd) defined by Yi =

q
∨

j=1

Xji, i = 1, ..., d, has multivariate extreme value distribution with
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unit Frechet margins and copula

CY (u1, ..., ud) = exp







−

q
∑

j=1

(

− lnCj

(

e−(−βj1 ln u1)1/αj
, ..., e−(−βjd ln ud)

1/αj

))αj







.(1)

Proof. To obtain CY we just apply the conditional independence of the Xj ’s followed by the

max-stability of Cj ’s and the αj-stability of each Sj , as follows:

P

(

d
⋂

i=1

{Yi ≤ xi}

)

=

∫

P





q
⋂

j=1

d
⋂

i=1

{Xji ≤ xi} |S = s



 dS (s1, ..., sq) =

∫ q
∏

j=1

Cj



e
−

(

x1
βj1

)−1/αj
sj

, ..., e
−

(

xd
βjd

)−1/αj
sj



 dS (s1, ..., sq) =

q
∏

j=1

exp







−



− lnCj



e
−

(

x1
βj1

)−1/αj

, ..., e
−

(

xd
βjd

)−1/αj








αj






.

For each j and i, Xji is a positive αj-stable size mixture of a Fréchet distribution with location βji,

scale βjiαj and shape parameter αj and has itself Fréchet distribution with same location and the

same right end point, but scale βji and shape parameter 1. Since
∑q

j=1 βji = 1, i = 1, ..., d, each Yi has

unit Fréchet distribution. The max-stability of CY follows from its expression and the max-stability

of the Cj ’s.

We now discuss some particular cases of (1) that has been explored.

(I) If q = 1 then β1i = 1, i = 1, ...d, and

CY (u1, ..., ud) = exp
{

−
(

− lnC1

(

e−(− ln u1)1/α1
, ..., e−(− ln ud)1/α1

))α1
}

is a generalisation of the Archimedean copula (Joe, 1997, [4]), which for the particular case of the

product copula C1 = Π leads to the Gumbel-Hougaard or logistic copula. The dependence properties

of the special case of C1(u1, ..., ud) =
∏

1≤s<t≤d

C{s,t}(u
ps
s , u

pt
t )

d
∏

i=1

u
piνi
i , where C{s,t}, 1 ≤ s < t ≤ d, are

bivariate copulas and (d − 1)pi + piνi = 1, i = 1, ..., d, were analysed in Joe and Hu (1996, [5]).

(II) If Cj = Π, j = 1, ..., q, then

q
∏

j=1

exp







−



− lnCj



e
−

(

x1
βj1

)−1/αj

, ..., e
−

(

xd
βjd

)−1/αj








αj






= exp







−

q
∑

j=1

(

d
∑

i=1

(

xi

βji

)−1/αj
)αj







,

which leads to an asymmetric logistic copula

CY (u1, ..., ud) = exp







−

q
∑

j=1

(

d
∑

i=1

(−βji lnui)
−1/αj

)αj






.(2)
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In (2), if we take αj = α, j = 1, ..., q ≤ +∞, we find an analogous mixture of extreme value dis-

tributions to those considered in Fougères et al. (2009, [2]) by departing just from a random vector

X = (X1, . . . , Xd) satisfying

L (Xj |S) =
d
∏

i=1

L (Xi|S)

and

P (Xi ≤ x|S) = exp{−





q
∑

j=1

cjiSj





(

1 + γi
x − µi

σi

)−1/γi

}, i = 1, ..., d.

That this, in this different approach, conditionally on S, the vector X has independent margins and

each margin is a power mixture of an extreme value distribution with mixing variable
∑q

j=1 cjiSj ,

where the cji are non-negartive constants.

(III) Assume now, in (2), that each j corresponds to an element A of the set S, the class of all

nonempty subsets of D = {1, ..., d}. If βAi = 0 for each i 6∈ A then the copula (2) becomes

CY (u1, ..., ud) = exp

{

−
∑

A⊂S

(

d
∑

i∈A

(−βAi lnui)
−1/αA

)αA}

,(3)

with
∑

A⊂S βAi = 1, i = 1, ..., d. This is the asymmetric logistic model considered in Tawn (1990, [11]),

by following a different probabilistic approach. More generally, by applying the same interpretation

of the constants βji in (1), we obtain

(4) CY (u1, ..., ud) = exp

{

∑

A⊂S

(

− lnCA

(

e−(−βAi1(A) ln u1)
1/αA

, ..., e−(−βAis(A) ln ud)
1/αA

))αA
}

,

where CA’s are copulas with different dimensions and we denote by (i1(A), ..., is(A)) the sub-vector of

(1, ..., d) corresponding to indices in A. In particular, if we begin with one copula Cj = C, j = 1, ..., q,

then CA, A ⊂ S, are all the sub-copulas of C.

(IV) Finally, let us suppose that βji = βj , i = 1, ..., d, in (1). Then

CY (u1, ..., ud) =

q
∏

j=1

exp
{

−
(

lnCj

(

e−(− ln u1)1/αj
, ..., e−(− ln ud)1/αj

))αj

βj

}

,(5)

with
∑q

j=1 βj = 1, that is, CY is a geometric mean of mixtures of powers of multivariate extreme value

distributions. The particular case of the weighted geometric mean CY(u1, u2) = (u1∧u2)
β1(u1u2)

1−β1

is due to Cuadras and Augé (1981, [1]).

2. Orthant tail dependence

For a random vector Y = (Y1, . . . , Yd) with continuos margins F1, ..., Fd and copula C, let the

bivariate (upper) tail dependence parameters defined by

λ
(Y)
{s,t} ≡ λ

(C)
{s,t} = lim

u↑1
P (Fs (Ys) > u|Ft (Yt) > u) , 1 ≤ s < t ≤ d.(6)
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The tail dependence is a copula based measure and it holds

λ
(C)
{s,t} = 2 − lim

u↑1

lnC{s,t} (u, u)

lnu
,(7)

where C{s,t} is the copula of the sub-vector (Ys, Yt) ( Joe (1997, [4]), Nelsen (1999, [8])).

To characterise the relative strength of extremal dependence with respect to a particular subset

of random variables of Y one can use conditional orthant tail probabilities of Y given that the

components with indices in the subset J are extreme. The tail dependence of bivariate copulas can

be extended as done in Schmid and Schmidt (2007) ([9]) and Li (2009) ([6]).

For ∅ 6= J ⊂ D = {1, ..., d}, let

λ
(Y)
J ≡ λ

(C)
J = lim

u↑1
P





⋂

j /∈J

{Fj (Yj) > u} |
⋂

j∈J

{Fj (Yj) > u}



 .(8)

If for some ∅ 6= J ⊂ {1, ..., d} the parameter λ
(C)
J exists and is positive then we say that Y is

(upper) orthant tail dependent.

We have λ
(C)
J =

λ
(C)
{s}

λ
(CJ )
{s}

, if λ
(CJ )
{s} 6= 0 and the relation (7) between the tail dependence parameter

and the bivariate copula can also be generalized by

λ
(C)
J = lim

u↑1

∑

∅6=A⊂D

(−1)|A|−1 lnCA (uA)

∑

∅6=A⊂J

(−1)|A|−1 lnCA (uA)
,(9)

where CA denotes the sub-copula of C corresponding to margins with indices in A and and uA the

|A|-dimensional vector (u, ..., u). By applying this relation and the max-stability of the copulas Cj ,

we get the following result.

Proposition 2 For a copula C defined by (1), it holds

(a)

(10) λ
(C)
J =

q
∑

j=1

∑

∅6=A⊂D

(−1)|A|−1

(

− lnCj,A

(

e−β
1/αj
j1 , ..., e

−β
1/αj
jd

)

A

)αj

q
∑

j=1

∑

∅6=A⊂J

(−1)|A|−1

(

− lnCj,A

(

e−β
1/αj
j1 , ..., e

−β
1/αj
jd

)

A

)αj
,

where Cj,A denotes the sub-copula of Cj corresponding to the margins with indices in A.

(b) If Cj = Π, for each j = 1, ..., q, then

(11) λ
(C)
J =

q
∑

j=1

∑

∅6=A⊂D

(−1)|A|−1

(

∑

i∈A

β
1/αj

ji

)αj

q
∑

j=1

∑

∅6=A⊂J

(−1)|A|−1

(

∑

i∈A

β
1/αj

ji

)αj
.
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The tail dependence result in (10) depends on the mixing variables through the parameters αj ,

even for the case of q = 1, that is the global dependence added by the mixing variables doesn’t vanish

in extremes of maxima. This contrast with the result in Li (2009, [6]), where the scale mixture of

MEV distributions (RX1, ..., RXd) is considered with the mixing variable R satisfying E(e−ctR)
E(e−tR)

→ c−α,

as t tends to ∞, and c ≥ 1, α > 0. In this case the upper tail dependence parameters are exactly the

same as the parameters of the MEV distribution without mixing.

We remark that, for βji = βj , i = 1, ..., d, the numerator in (10) is, for each A ⊂ D,

λ
(CA)
{s} =

q
∑

j=1

βjλ
(Cj,A)
{s}

that is, the tail dependence parameter λ
(CA)
{s} is a linear convex combination of the corresponding tail

dependence parameters for the sub-copulas Cj,A of Cj , j = 1, ..., q.

The result in (11) leads to

λ
(C)
{s,t} = 2 −

q
∑

j=1

(

β
1/αj

js + β
1/αj

jt

)αj

,

extending the the known result

λ
(C)
{s,t} = 2 − 2α,(12)

corresponding to q = 1 (Joe (1997, [4]), Nelsen (1999, [8])). The result in (10) enables to extend the

equation (12) for other copulae C1 than the product copula as

λ
(C)
{s,t} = 2 − (2 − λ

(C1)
{s,t})

α.(13)

3. Example

We will suppose that Cj = C, j = 1, ..., d, with

C(u1, ..., ud) =
∞
∏

l=1

∞
∏

k=−∞

(

d
∧

i=1

u
alki
i

)

, uj ∈ [0, 1], j = 1, ..., d,

where {alkj , l ≥ 1,−∞ < k < ∞, 1 ≤ j ≤ d}, are nonnegative constants satisfying

∞
∑

l=1

∞
∑

k=−∞

alkj = 1 for j = 1, . . . , d.

That copula arises from the common distribution of the variables of an M4 process (Smith and Weiss-

man (1996, [10])).

Then the copula in (1) becomes

CY (u1, ..., ud) = exp







−

q
∑

j=1

(

∞
∑

l=1

∞
∑

k=−∞

d
∨

i=1

(

−βjia
αj

lki lnui

)1/αj

)αj






.(14)
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By applying the result in Proposition 2.1. (a), we obtain for the numerator in (10)

λ
(CY)
{s} =

q
∑

j=1

∑

∅6=A⊂D

(−1)|A|−1

(

∞
∑

l=1

∞
∑

k=−∞

∨

i∈A

(

alkiβ
1/αj

ji

)

)αj

.

For the bivariate tail dependence it holds

λ
(CY)
{s,t} = 2 −

∞
∑

l=1

∞
∑

k=−∞

q
∑

j=1

(

alksβ
1/αj

js ∨ alktβ
1/αj

jt

)αj

,

which, for the case q = 1 leads to the result λ
(CY)
{s,t} = 2 −

∞
∑

l=1

∞
∑

k=−∞

(alks ∨ alkt) in Heffernan et al.

(2007, [3]).
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