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1 Introduction

The outcomes of many real-life random experiments in as different fields as Social, Experi-

mental and Biomedical Sciences, present an imprecision prompted by linguistic inaccuracy in value

judgements, limited measuring instruments or the focus on data sets in which each datum is given

by a set of values, like fluctuations. Furthermore, there is an underlying imprecision in both the

first and the third situations which will be formalized in terms of the scale of fuzzy numbers, a rich,

intuitive and easy-to-use scale (including real and interval values as special elements) that provides

more accuracy than numerical values in a more expressive way than categorical ones.

Random fuzzy numbers (as a particular case of the random fuzzy sets introduced by Puri and

Ralescu (1986) under the name of ‘fuzzy random variables’) are the generalization of the concept of a

random variable. They represent the mathematical mechanism to generate data taking values in the

scale of fuzzy numbers. Although their probabilistic aspects have been deeply studied, statistical ones

are being still analyzed, recalling the lack of linearity dealing with the usual arithmetic with fuzzy

values, a universally acceptable total ordering in the space of fuzzy values and realistic ‘parametric’

families for their distributions.

The most usual central tendency measure to summarize the information given by a random

fuzzy set is the Aumann-type expected value (see, for instance, Körner, 2000), defined by means of an

L2-type distance between fuzzy values that plays the same role as the Euclidean distance in the real-

valued case. To go into detail, the Aumann-type expected value is the fuzzy set such that minimizes

the expectation of the squared distances (in terms of the L2-type metric) from itself to all the values

the random fuzzy set takes on. Though the use of this measure is supported by the Strong Laws

of Large Numbers and the fulfilment of the Fréchet’s Principle (w.r.t. the previous L2-type metric),

as well as appropriate properties like the equivariance under linear transformations and the sum of

random fuzzy numbers, the Aumann-type expected value is, since it is defined using the real-valued

mean, very sensitive to the existence of ‘extreme’ data or data changes.
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The more robust behavior of the median in the real-valued case inspires the generalization of

this concept for random fuzzy sets. Since there is no universal ranking in this space, it is not possible

to define the median as the middle position value. Nevertheless, the concept can be extended using

the alternative definition of the median as the value minimizing the mean Euclidean distance w.r.t.

variable values. An L1-metric will be needed for the previous purpose, to be made in Section 3 together

with the subsequent analysis of its properties, after recalling some preliminaries on fuzzy numbers and

random fuzzy sets in Section 2. In Section 4, an algorithm implemented in R to calculate the median

of a sample of fuzzy numbers, included in the latest version of the package SAFD (which contains

functions for the basic operations and estimates involving fuzzy numbers) will be described and how

it works will be also explained with the help of an illustrative example. Finally, some concluding

remarks will be commented in Section 5.

2 Preliminaries on fuzzy numbers and random fuzzy sets

In this Section, only the mathematical definition of the concepts referred to in the Introduction

is written because of the restricted paper length. Anyway, some of the features of the space used have

already been mentioned.

A fuzzy number is a mapping Ũ : R → [0, 1] so that for each α ∈ (0, 1] its corresponding α-level

set Uα = {x ∈ R : Ũ ≥ α} is a nonempty, closed and bounded interval. One remark is that when it

is required, the 0-level is assumed to be Ũ0 = {x ∈ R : Ũ(x) > 0}. This mapping represents, for each

real value x, the ‘degree of compatibility of x with the property represented by Ũ ’ or the ‘degree of

possibility of the assertion “x is Ũ”’. Fc(R) will be the notation for the space of fuzzy numbers.

The two more important operations from a statistical point of view, the sum and the product

by a scalar, are defined from Zadeh’s extension principle (1975). The expressions written below show

that the usual fuzzy arithmetic coincides with the level-wise extension of the usual interval-valued

operations:

• the sum of any two fuzzy numbers Ũ and Ṽ is defined as the fuzzy number Ũ + Ṽ such that for

each α ∈ [0, 1], (Ũ + Ṽ )α = Minkowski sum of Ũα and Ṽα = {y + z : y ∈ Ũα, z ∈ Ṽα},

• the product of Ũby the scalar γ is defined as the fuzzy number γ · Ũ such that for each α ∈ [0, 1],

(γ · Ũ)α = γ · Ũα = {γ · y : y ∈ Ũα}.

As it has already been said, the space (Fc(R),+, ·) is not linear and to overcome the inexistence of

difference (the Hukuhara difference can be considered level-wise, but it may not be well-defined for

many fuzzy numbers) distances will be established. Although fuzzy and functional arithmetic are

not the same, each element Ũ ∈ Fc(R) can be identified by a function: its support function (see, for

instance, González-Rodŕıguez et al., 2011) S
Ũ
: {−1, 1}× (0, 1] → R such that Ũα = [inf Ũα, sup Ũα] =

[−s
Ũ
(−1, α), s

Ũ
(1, α)]. As a consequence, an L1-type distance between fuzzy numbers can be defined

from the 1-norm between their correspondent support functions, the 1-norm distance between fuzzy

numbers (δ1):

δ1 : Fc(R)×Fc(R) → [0,∞)

(Ũ , Ṽ ) 7→ δ1(Ũ , Ṽ ) = ‖s
Ũ
− s

Ṽ
‖1

= 1
2

∫
(0,1](| inf Ũα − inf Ṽα|+ | sup Ũα − sup Ṽα|)dα

which is topologically equivalent to the metric d1 by Klement et al. (1986) defined as follows:

d1(Ũ , Ṽ ) =
∫
(0,1] dH(Ũα, Ṽα)dα (where dH denotes the Hausdorff metric between nonempty compact

intervals).

Thus, (Fc(R), δ1) is a separable metric space. Furthermore, an isometrical embedding of F∗
c (R) =

{Ũ ∈ Fc(R) : sŨ ∈ H∗
1} (where H∗

1 denotes the space of the L1-type real-valued functions defined on
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{−1, 1} × (0, 1]) with the fuzzy arithmetic and the δ1 metric onto a closed convex cone of H∗
1 with

the functional arithmetic and the metric based on the 1-norm is established by means of the mapping

s : F∗
c (R) → H∗

1 such that s(Ũ) = s
Ũ
. As a consequence, fuzzy data can be treated as functional data

by identifying them with their support functions and a lot of results of Functional Data Analysis can

be applied if the result belongs to the image of s.

To formalize the process of generation of fuzzy numbers, a random fuzzy number (RFN) is

defined, given a probability space (Ω,A, P ), as a mapping X : Ω → Fc(R) such that, for all α ∈ (0, 1],

the α-level mapping Xα is a compact random interval. Equivalently, it could be defined requiring that

inf Xα and supXα are real-valued random variables. Anyway, X is a Borel-measurable mapping w.r.t.

the Borel σ-field generated on Fc(R) by the topology associated with δ1 (see Colubi et al., 2001).

As it has already been said, the most usual central tendency measure is the so-called Aumann-

type expected value of a random fuzzy number: the fuzzy number Ẽ(X ) ∈ Fc(R) such that, for all

α ∈ (0, 1], (Ẽ(X ))α = [E(inf Xα), E(supXα)] if these expectations exist.

3 The δ1 median of a random fuzzy set

To overcome the strong influence data changes and ‘extreme’ values have on the estimation of

the Aumann-type expected value, the generalization of the median will be established as explained in

the Introduction, by means of the δ1 distance. Therefore,

Definition 1 The median (or medians) of a random fuzzy number X associated with a probability

space (Ω,A, P ) is (are) the fuzzy number(s) M̃e(X ) ∈ Fc(R) satisfying:

E(δ1(X , M̃e(X ))) = min
Ũ∈Fc(R)

E(δ1(X , Ũ ))

The next theorem (see Sinova et al., 2010) proves the existence of at least one median and makes its

calculus easier in practice.

Theorem 1 Given a random fuzzy number X associated with a probability space (Ω,A, P ), the fuzzy

number M̃e(X ) ∈ Fc(R) such that, for all α ∈ (0, 1], (M̃e(X ))α = [Me(inf Xα),Me(supXα))] with the

following convention is one median of X in accordance with the previous definition:

• If Me(inf Xα) is not unique, it will be chosen to be the midpoint of the interval of medians of

inf Xα,

• If Me(supX − α) is not unique, it will be chosen to be the midpoint of the interval of medians

of supXα.

From now, to study its properties, the median will be defined as the unique fuzzy number in the

previous theorem. A first remark is that this median needn’t coincide with one of the values of the

random fuzzy number. An example in which this happens and comments or proofs of the following

properties it fulfils can be also found in Sinova et al. (2010).

Proposition 1 M̃e(γ · X + Ũ) = γ · M̃e(X ) + Ũ for all γ ∈ R, Ũ ∈ Fc(R), X RFN.

That is to say, the median is equivariant by ‘linear transformations’. A consequence of the Proposi-

tion 1 is that if the distribution of the RFN X is degenerate at a fuzzy number Ũ ∈ Fc(R) (i.e., X = Ũ

a.s.[P]), then M̃e(X ) = Ũ .

Although the median couldn’t be extended as a ‘middle position’ value, it is interesting to note

that the median just defined can be formalized as a ‘middle position’ value w.r.t. the fuzzy max partial

order, stated by Ramı́k and R̆ı́maánek (1985), whenever this order applies:

Ũ - Ṽ if and only if λ sup Ũα+(1−λ) inf Ũα ≤ λ sup Ṽα+(1−λ) inf Ṽα for all α, λ ∈ [0, 1].
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Such an order, although partial, is the natural level-wise extension of the product order on R2

using the inf/sup characterization of the α-levels, so it is relevant to preserve it in the case it applies.

A very important inferential property the median inherits from the real case is its δ1-strong

consistency (if Me(inf Xα) and Me(supXα) are unique for every α):

Proposition 2 Let X be an RFN associated with a probability space (Ω,A, P ) such that Me(inf Xα)

and Me(supXα) are unique for every α (without applying the convention adopted in Theorem 1).

Then,

lim
n→∞

δ1

(
̂̃
Me(X )n, M̃e(X )

)
= 0 a.s. [P ],

where
̂̃
Me(X )n denotes the sample median having considered a simple random sample from X .

The main advantage of the sample median of a RFN (as an estimator of the population median)

is its higher robustness w.r.t. the sample mean of an RFN (as an estimator of the population mean),

shown by their respective finite sample breakdown points (fsbp), which inform of the minimum pro-

portion of sample data that should be perturbed to make the corresponding estimator arbitrarily big

or small. Adapting the definition of fsbp given in Donoho and Huber (1983),

Proposition 3 The finite sample breakdown point of the sample median of an RFN X ,

fsbp(
̂̃
Me(X )n, x̃n, δ1) =

1

n
min

{
k ∈ {1, . . . , n} : sup

Qn,k

δ1(
̂̃
Me(Pn), ˜̂Me(Qn,k)) = ∞

}
,

is
1

n
· ⌊

n+ 1

2
⌋ (where ⌊·⌋ denotes the floor function, x̃n denotes the considered sample of n data

from the metric space (Fc(R), δ1) which fulfils that sup
Ũ ,Ṽ ∈Fc(R)

δ1(Ũ , Ṽ ) = ∞, Pn is the empirical

distribution of x̃n and Qn,k is the empirical distribution of sample ỹn,k obtained from the original one

x̃n by perturbing at most k components).

So taking into account that the finite sample breakdown point of the sample mean of an RFN is

fsbp(Xn, x̃n, δ1) =
1
n
, the finite sample breakdown point of the sample mean from an RFN X is lower

than the one for the sample median when the sample size is n > 2.

4 An R function to calculate the median of a sample of fuzzy numbers

In this section, the functionality of the R function Fmedian to compute the median of a given

sample of fuzzy numbers is explained: the more important parts of its R algorithm, contained in the

package SAFD (see Trutschnig and Lubiano, 2011) will be commented and some illustrative examples

will show how it may be used.

The median is the 50%-quantile, so the algorithm Fmedian calls the function Fquantile, also

contained in the SAFD package. Specifying the data set and the quantiles one wants to compute,

Fquantile first computes the (Minkowski) mean if the data are in the correct form (in case not, the

function checking informs of whether the fuzzy numbers introduced are in fact fuzzy numbers and

translator writes all of them using the same number of α-levels).

Sample data are collected in a matrix in which columns represent the sorted x-values of the

infima and the suprema of the considered α-levels for all sample fuzzy data. Quantiles will be computed

levelwise, i.e., for each row in the matrix.

As an illustrative example the data set Trees contained in SAFD can be loaded. It is a list of

three sublists which inform about the quality of the three main species of trees in Asturias (birch,

sessile oak and rowan) in a reforested area. Let’s consider the first sublist: a sample of 133 trapezoidal
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fuzzy numbers. Each of them represent the experts subjective perception of the tree quality on a scale

from 0 to 5 (0 associated with very bad quality and 5, with very good quality). Recall that the 1-cut

is the interval in which the expert believes the quality of the tree to be contained in and the 0-cut, the

interval in which he/she is totally sure the quality is contained. The median is obtained and plotted

(together with the Aumann-type expected value):
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data(Trees)

Sample<-Trees$species1

Fmedian(Sample,pic=1)

x alpha

1 2.20 0.00

2 2.70 1.00

3 3.30 1.00

4 3.80 0.00

The second example shows how the sample median converges to the population one when the

sample size increases. In the code it can be seen how the generator function (from SAFD package)

is used to generate a sample of a population with a known mean, X, and with a population median

easily determined because of the properties of the gamma distribution and the special choice of X:

XL<-data.frame(cbind(x=c(2,4,4,4),alpha=c(0,1,1,0)))

XR<-data.frame(cbind(x=c(6,6,6,9),alpha=c(0,1,1,0)))

nl<-101

EL<-translator(XL,nl)

ER<-translator(XR,nl)

R<-c(5,50,100,1000)

A<-list()

SS<-list()

for (k in 1:length(R)){

SSL<-vector("list",length=R[k])

SSR<-vector("list",length=R[k])

for (j in 1:R[k]){

SSL[[j]]<-generator(EL,pertV=list(dist="unif",par=c(0,0)),pertL=list(dist="exp",par=c(1)),

pertR=list(dist="exp",par=c(1)))

SSR[[j]]<-generator(ER,pertV=list(dist="unif",par=c(0,0)),pertL=list(dist="exp",par=c(1)),

pertR=list(dist="exp",par=c(1)))

SS[[j]]<-data.frame(cbind(x=c(SSL[[j]]$x[1:nl],SSR[[j]]$x[(nl+1):(2*nl)]),alpha=EL$alpha))}

M<-Mmean(SS,pic=0)

A[[k]]<-Fmedian(SS,pic=0)

A[[k]]}

quants<-rep(0,(2*nl))

for(i in 1:(nl)){quants[i]<-mean(XL$x[2:3])-qgamma(0.5,shape=i,scale=2/(nl-1))}

for (i in (nl+1):(2*nl)){quants[i]<-mean(XR$x[2:3])+qgamma(0.5,shape=i-nl,scale=3/(nl-1))}

xq<-sort(quants[1:(nl)])

quants<-c(xq,quants[(nl+1):(2*nl)])

Q<-data.frame(x=quants,alpha=A[[1]]$alpha)

dev.new()

par(mfrow=c(2,2))

for (k in 1:length(R)){

plot(Q,type="l",cex=0.1, col="red",main=paste("Sample size ",R[k],sep=""),xlim=c(2,9))

lines(Q,type="p",col="red",cex=0.2)

lines(A[[k]],type="l",cex=0.1,col=colors()[225-20*(k-1)])
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lines(A[[k]],type="p",col=colors()[225-20*(k-1)],cex=0.2)

legend("bottom", c("True median", "Sample median"), inset = c(.03, .03), lwd=3, lty=1,

col=c(’red’,colors()[225-20*(k-1)]),)
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