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INTRODUCTION

One common problem experienced by inhabitants of large cities throughout the world is the

exposure to ozone air pollution. Even though several measures have been implemented by the envi-

ronmental authorities as an effort to control ozone level in Mexico City, this pollutant still presents

high concentration levels. It is a well known fact that individuals exposed for a long period of time

to a high concentration of ozone may experience serious health problems (see for instance Bell et al.,

2005; O’Neill et al., 2004; and Loomis et al., 1996). Hence, to understand the behaviour of ozone is a

very important issue.

In Mexico, the ozone environmental standard (NOM, 2002) states that a person should not be

exposed, on average, for a period of one hour or more to a concentration of 0.11 parts per million

(0.11ppm) or above. The threshold used in Mexico City to declare emergency alerts is 0.2ppm (see for

instance http://www.sma.df.gob.mx). When this threshold is surpassed, measures are taken to bring

the level down through actions that may reduce the emission of ozone precursors. Nevertheless, the

main benefit of those emergency alerts is to warn the population about the high levels of ozone and

prevent human exposure to the pollutant.

Many works modelling strategies to predict pollution emergency episodes have been considered

in the literature. Among those strategies we have extreme value theory, multivariate analysis, Markov

chains, stochastic volatility models and Poisson models (homogeneous and non-homogeneous). Itô et

al. (2005) and Seinfeld (2004) present a review of some of the statistical methodologies commonly

used in the study of environmental problems.

In this paper, we use a more general counting process than the Poisson process to estimate the

probability that a given environmental threshold is surpassed a certain number of times in a time

interval of interest. Two cases are considered. In one of them we keep the assumption of independent

inter-occurrences times (present in Poisson models), but we change their distribution to a Gamma

distribution. In the second case, we keep the Gamma distribution for the inter-occurrences times and

remove the independence assumption. The distribution of those inter-exceedances times will depend
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on some parameters that need to be estimated. That will be performed using a Bayesian point of view

via a Markov chain Monte Carlo (MCMC) algorithm. The results presented here are applied to the

ozone data provided by the monitoring network of the Metropolitan Area of Mexico City.

DESCRIPTION OF THE MODELS

Assume that there are K (> 0) days, d1, d2, . . . , dK , in which a given ozone environmental

threshold is surpassed during the time interval [0, T ] (T > 0). Let D = {d1, d2, . . . , dK} be the set of

observed data and let Wi, i = 1, 2, . . . denote the time between the ith and the (i− 1)th exceedances.

Let N = {Nt : t ∈ [0, T ]} be such that Nt records the number of times that a threshold exceedance

occurred in the time interval [0, t), t ≥ 0. Define Sn =
∑n

i=1Wi, n ≥ 0. Hence, we may write,

P (Nt = n) = P (Sn ≤ t)− P (Sn+1 ≤ t). Therefore, the distribution of Sn determines the distribution

of Nt. Hence, if we have information on the behaviour of the Wi, i = 1, 2, . . ., then we also have

information on the behaviour of Sn, n ≥ 0 and consequently on the behaviour of N . Two models are

considered here for the counting process. They are described as follows.

Model I. First of all, we assume that the inter-occurrences times Wi, i = 1, 2, . . . ,K are

independent and identically distributed with a Gamma(α, β) common distribution with mean α/β

and variance α/β2. Hence, in here the vector of parameter to be estimated is θI = (α, β), α > 0,

β > 0.

Model II. In this model, we keep the assumption of identically distributed Gamma inter-

exceedances times, but now we remove the independence assumption. In order to specify the model

used here consider the following (see Sim, 1990). Let Y = {Yt : t ≥ 0} be a Poisson process with mean

(p β t), p ∈ (0, 1) and β > 0. Take Xi, i = 1, 2, . . . independent and identically distributed quantities

with common distribution an Exponential(β), β > 0, with mean 1/β and variance 1/β2. Also, take Ei,

i = 1, 2, . . . independent and identically distributed Gamma(β, α) random variables, α, β > 0. Let Wi,

i = 1, 2, . . . be the inter-occurrences times. Hence, define (see Sim, 1990, 1992), Wi =
∑Y (Wi−1)

j=1 Xj +

Ei, i = 1, 2, . . .. Assuming that Wi, i = 1, 2, . . . is in equilibrium we have, from Sim (1990), that Wi

has a Gamma(β, α (1 − p)) density function, i.e., fWi(t) = ([α (1 − p)]β tβ−1 e−α (1−p) t)/Γ(β), with

α, β, t > 0 and p ∈ (0, 1). We also have (Sim, 1990) that the joint density function of Wi and Wi+1 is

fWi+1Wi(s, t) =

(
s t

p

)(β−1)/2 αβ+1 (1− p)βe−α (s+t)

Γ(β)
Iβ−1

(
2α [p s t]1/2

)
,

where Ir(z) is the modified Bessel function of the first kind of order r. Therefore, the conditional

density of Wi+1 given Wi is

fWi+1 |Wi
(s | t) =

(
s

p t

)(β−1)/2
α e−α (s+p t) Iβ−1

(
2α [p s t]1/2

)
.(1)

Hence, the vector of parameters to be estimated here is θII = (α, β, p), α > 0, β > 0 and p ∈ (0, 1).

Parameters will be estimated by a Gibbs sample drawn from the respective complete marginal

conditional posterior distribution of each coordinate of the vector of parameters which are given as

follows (from now on we take d0 = 0).

In the case of Model I, the likelihood function of the model is given by

L(D |θI) ∝

(
K∏
i=1

fWi(di − di−1)

)
P (WK+1 > T − dK),

where P (WK+1 > t) = 1−
∫ t
0 fWK+1

(s) ds. Hence,

L(D |θI) ∝
(
βα

Γ(α)

)K [ K∏
i=1

(di − di−1)

]α−1
e−β dK

[
1− βα

Γ(α)

∫ T−dK

0
sα−1 e−β s ds

]
.
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Therefore, the complete marginal conditional posterior distributions of the parameters α and β are,

P (α |β,D) ∝ ψ1(α, β) and P (β |α,D) ∝ ψ2(α, β) where,

ψ1(α, β) = exp

[
K α log(β)−K log [Γ(α)] + (α− 1)

K∑
i=1

log(di − di−1) + h1(α, β, T, dK)

]

and ψ2(α, β) = exp [K α log(β)− β dK + h1(α, β, T, dK)] and where we define h1(α, β, T, dK) = log [1−∫ t
0 fWK+1

(s) ds
]
.

When we consider Model II, the likelihood function of the model is

L(D |θII) ∝ fW1(d1)

(
K∏
i=2

fWi |Wi−1
(di − di−1 | di−1 − di−2)

)
P (WK+1 > T − dK |WK = dK − dK−1),

where P (Wi+1 > x |Wi = t) = 1−
∫ x
0 fWi+1 |Wi

(s | t) ds. Hence, we have that

L(D |θII) ∝
αβ+K−1 (1− p)β

Γ(β)

[
d1 (dK − dK−1)

pK−1

](β−1)/2
exp (−α(dK + p [dK−1 − d1])[

K∏
i=2

Iβ−1

(
2α [p (di − di−1) (di−1 − di−2)]1/2

)]
[
1−

∫ T−dK

0
fWK+1 |WK

(s | dK − dK−1) ds.
]

Therefore, the complete marginal conditional distributions of the parameters are P (α |β, p,D) ∝
ψ3(α, β, p), P (β |α, p,D) ∝ ψ4(α, β, p) and P (p |α, β,D) ∝ ψ5(α, β, p), where

ψ3(α, β, p) = exp [(β +K − 1) log(α)− α [dk + p (dK−1 − d1)] + h(α, β, p, T, dK−1, dK)] ,

ψ4(α, β, p) = exp [(β +K − 1) log(α) + β log(1− p)− log (Γ(β))

− (β − 1)

2
[(K − 1) log(p)− log(d1)− log(dK − dK−1)] + h(α, β, p, T, dK−1, dK)

]
,

ψ5(α, β, p) = exp

[
β log(1− p)− (β − 1)(K − 1)

2
log(p)− αp (dK − dK−1) + h(α, β, p, T, dK−1, , dK)

]
with h(α, β, p, T, dK−1, dK) =

∑K
i=2 h2(α, β, p, i)+h3(α, β, p, T, dK−1, dK), where we take h2(α, β, p, i) =

log
[
Iβ−1

(
2α [p (di − di−1) (di−1 − di−2)]1/2

)]
and

h3(α, β, p, T, dK−1, dK) =log
[
1−

∫ T−dK
0 fWK+1 |WK

(s | dK − dK−1) ds
]
.

The prior distributions for all parameters, models, regions and data sets are taken to be Uniform

distributions defined on appropriate intervals. Those intervals are considered known and will be

specified later.

The model that provides the best fit to the data is chosen via the Deviance Information Criterion

(DIC) (see for instance Spiegelhalter et al., 2002). The DIC can be estimated by using the generated

MCMC sample. The smaller the DIC, the better the fit of the model to the data. Usually a difference

of DIC between two models that is larger than 10 is a strong evidence in favor of the best model

(Burhan and Anderson, 2002).

AN APPLICATION TO MEXICO CITY OZONE DATA

Nowadays in Mexico City, environmental emergency alerts are issued locally instead of declar-

ing it in the entire city. Hence, the Metropolitan Area of Mexico City has been divided into five

sections corresponding to the Northeast (NE), Northwest (NW), Centre (CE), Southeast (SE) and
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Southwest (SW) and the ozone monitoring stations are placed throughout the city (see for instance

http://www.sma.df.gob.mx). When the threshold 0.2ppm is surpassed in one or more of the regions,

then an environmental emergency alert is issued only in those regions. Therefore, measures are taken

only in those parts of the city instead of the whole city. In this paper, we have considered the same

spatial division used by the Mexico City’s environmental authorities to declare those alerts. We will

analyse the data from all five regions. The threshold that we are going to consider is the Mexican

standard for ozone, i.e., 0.11ppm.

The data used in the analysis (http://www.sima.gob.mx/simat/) correspond to nineteen years

(from 01 January 1990 to 31 December 2008) of the daily maximum measurements in each region giving

a total of T = 6940 measurements (for a description of how the data are obtained see for instance

Achcar et al., 2008). The nineteen-year average measurements in regions NE, NW, CE, SE and SW

are 0.1279, 0.1006, 0.1332, 0.1262 and 0.1503, respectively, with respective standard deviations given

by 0.0579, 0.0401, 0.0556, 0.0479 and 0.0617. We also have that the threshold 0.11ppm was surpassed

in 4147, 2925, 4675, 4616 and 5307 days in regions NE, NW, CE, SE and SW, respectively.

In order to perform the analysis we have split the data into two parts, from 01 January 1990 to

31 December 1999 and from 01 January 2000 to 31 December 2008. The main reason for doing so is

that around the year 2000 we have that the last major restriction on private vehicles circulating in the

Metropolitan Area was implemented. We also have that from around the year 2000 the daily maximum

measurements present a clear decreasing behaviour. That is easily seen when we observe that, for

instance, during the period 1990-1999, in regions NE, CE, SE and SW the average measurements were

above 0.14 and during the period 2000-2008, the maximum value of the average measurements was

achieved in region SW with a value of 0.1246. During the same period in regions NE, NW, CE and SE

the average measurements range from 0.0923 (in region NW) to 0.1087 (in region CE). We also have

that during the period 1990-1999, in regions NE, CE, SE and SW, in more than 75% of the days the

threshold 0.11ppm was surpassed. In region NW we that the percentage of surpassings is 51.42% of

the total days of the period 1990-1999. However, during the period 2000-2008, there was a decreasing

of those percentages, being region SW the one where we still have a high percentage of days (66.51%)

where the threshold 0.11ppm was surpassed. In the other regions the percentage ranges from 31.81%

(in region NW) to 54.29% (in region SE).

The analysis will be performed for each region, model and set of data separately. In all models,

regions, parameters and data sets, the estimation of the parameters was made through a sample

obtained by using a Gibbs sampling algorithm. Ten chains were run for each parameter and samples

were drawn after a burn-in period of 10000 steps. After the burn-in period each chain was run another

10000 steps and every 100th generated value was taken to be part of the sample. Hence, each chain

produced a sample of size 100 and therefore, estimation of the parameters was made using a sample

of size 1000. Convergence analysis of the algorithm was performed through visual inspection of the

trace plots of each chain as well as using the Gelman-Rubin test (see Gelman and Rubin, 1992).

Regarding the hyperparameters of the prior distributions we have that in the case of either

Model I or Model II for all regions and data sets we have that the parameters α and β have Uniform

prior distributions U(0,10). When Model II is taken into account, then the parameter p has a U(0,0.5)

prior distribution. When the DIC is used to select the model that best fit the data, we have that for

all regions and data sets the selected model was Model II. Hence, we are going to report the estimated

parameters only for that model. Therefore, in Table 1 we have the mean, standard deviation (indicated

by SD) and the 95% credible interval for all parameters, regions and data sets when Model II is used.

Conclusion
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In this paper we have considered two models for studying the behaviour of the time between

consecutive surpassings of a given environmental threshold by a pollutant’s concentration. One of

the models assume independence between two consecutive such times and the other allows for a

dependence. The models were applied to ozone measurements obtained from the monitoring network

of Mexico City. The threshold considered was the Mexican ozone standard of 0.11ppm. The model

selected to explain the behaviour of the data was the one that allows for the dependence between two

consecutive times between surpassings. That result corroborates the day to day experience that when

0.11ppm is considered as a threshold, the inter-occurrences times are dependent. Even though the

selected model is the same for both period considered (1990-1999 and 2000-2008), the difference in

the behaviour of the measurements is also captured by the selected model. That is expressed in Table

1 where we can note the difference in the values of the estimated parameters. The values of α and β

are larger when using the 1990-1999 data. When considering the parameter p we have that, with the

exception of region SW, it is larger when considering the 2000-2008 data. That is reflected when we

consider the graphical behaviour of the estimated and observed inter-occurrences times conditional

densities. When we consider the data 1990-1999, we have that the estimated conditional densities

underestimate, but not by much, the observed conditional densities when we consider regions NE,

CE and SE and inter-occurrences times smaller than two days. When considering regions NW and

SW and two days inter-occurrences time intervals, we have that the estimated conditional densities

underestimate a lot the observed conditional densities in the case of region NW and provides a good

estimation in the case of region SW. In the case of inter-occurrences times with length larger or equal

to two, the fitting is reasonable for all regions. When considering the 2000-2008 we also have an

underestimation of observed conditional densities by the estimated ones and inter-exceedances times

smaller than two days. However, the underestimation is really bad for all regions, with the exception

of region SW, where the fitting is good. In the case of larger inter-occurrence times the estimation is

reasonable.

In conclusion, we have that in the case of ozone and using the threshold 0.11ppm a model that

considers a dependent behaviour between two consecutive times between exceedances is a more ade-

quate model. However, when considering Gamma inter-occurrences times, in some cases the estimated

conditional densities of those times does not provide a good fit to the observed conditional densities

Table 1. Estimated parameters of Model II.

Mean SD 95% Credible interval

90-99 00-08 90-99 00-08 90-99 00-08

NE α 3.4445 0.7249 0.1035 0.0335 (3.2727; 3.6149) (0.6696; 0.7789)

β 4.4811 1.4505 0.1181 0.0507 (4.2820; 4.6711) (1.3663; 1.5382)

p 0.0235 0.1436 0.0109 0.0189 (0.0066; 0.0418) (0.1107; 0.1756)

NW α 1.0140 0.4130 0.0365 0.0221 (0.9513; 1.0759) (0.3773; 0.4480)

β 1.7752 1.1502 0.0524 0.0443 (1.6827; 1.8608) (1.0783; 1.2240)

p 0.0989 0.1163 0.0154 0.0233 (0.0750; 0.1236) (0.0772; 0.1551)

CE α 3.9870 1.0620 0.0123 0.0389 (3.9645; 3.9988) (0.9976; 1.1229)

β 4.9451 1.8740 0.0376 0.0557 (4.8733; 4.9941) (1.7860; 1.9669)

p 0.0105 0.0827 0.0069 0.0150 (0.0012; 0.0232) (0.0589; 0.1089)

SW α 4.5652 2.1863 0.0792 0.0719 (4.4414; 4.6998) (2.0774; 2.3062)

β 4.9916 3.0730 0.0085 0.0883 (4.9707; 4.9998) (2.9443; 3.2264)

p 0.0657 0.0650 0.0147 0.0142 (0.0405; 0.0888) (0.0434; 0.0885

SE α 3.8651 1.2201 0.0664 0.0471 (3.7451; 3.9717) (1.1428; 1.2969)

β 4.9132 2.0899 0.0646 0.0666 (4.7878; 4.9930) (1.9839; 2.2029)

p 0.0147 0.0709 0.0089 0.0162 (0.0024; 0.03) (0.0454; 0.0963)
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when the present data is taken into account. In those cases perhaps considering a different form than

the Gamma density could be more adequate, but this is the subject of another study.
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