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Introduction

Classification and regression tree is a method for data mining. Its data analysis results are

presented in a tree-structured format which is intuitively appealing. This nature makes the method a

favor choice among practitioners.

Three basic elements for constructing classification and regression trees are split selection, model

fitting and model selection. The usual approach selects the splitting variables using so called the

exhaustive search method. This approach is implemented in methods, like CART (Breiman, Friedman,

Olshen & Stone 1984) and C4.5 (Quinlan 1993). However, this exhaustive search approach has been

demonstrated to have selection bias toward variables with more splitting points and/or missing values

(see, for example, Loh & Shih (1997) and Loh (2002)). To avoid the selection bias, the approach

which separates the issue of variable selection from that of split point selection is proposed. For model

fitting methods at each node, constant models are mostly used (Breiman et al. 1984, Quinlan 1993).

To increase the flexibility of tree models, simple linear or higher order linear models are considered at

each node (Loh 2010). Methods, like QUEST (Loh & Shih 1997), CRUISE (Kim & Loh 2001), and

GUIDE (Loh 2002, Loh 2009) are proved to be more reliable in assessing and explaining the resulting

trees.

Most of the classification and regression trees deal with univariate response. The first attempt to

develop regression tree method handling multivariate responses can be traced back to Gillo & Shelly

(1974) who extended the AID method. Recently, several multivariate classification and regression

tree methods emerge from the literature. For example, Zhang (1998), Siciliano & Mola (2000), Kim,

Kim & Lee (2003) and Noh, Song & Park (2004) propose multivariate classification trees. On the

other hand, De’ath (2002), Larsen & Speckman (2004), and Lee (2005) study multivariate regression

trees. Most of them can be treated as multivariate versions of CART. Among them, the exhaustive

search principle is still used as the default method of variable selection (Zhang 1998, Siciliano &

Mola 2000, Kim et al. 2003, De’ath 2002, Larsen & Speckman 2004). At each node, they usually fit a

piece-wise constant model to the multivariate data. Thus, they constantly ignore possible correlation

between the responses. After data are partitioned recursively, a pruning method (model selection

method) is decided to choose the best subtree. The aforementioned methods often adapt CART’s

pruning method (Breiman et al. 1984) or some ad hoc direct stopping rules. Moreover, Lee & Shih

(2006) and Hsiao & Shih (2007) have showed that the exhaustive search method based on various

criteria in the multivariate trees still selects variables with more splitting points.

Recently, Dine, Larocque & Bellavance (2009) propose a tree method for mixed responses.

Their approach to variable selection follows exhaustive search principle. Therefore, we believe that

the method itself has selection bias and we show the evidences in this study. A statistical approach

which extends that of Lee & Shih (2006) and Hsiao & Shih (2007) is proposed. We show that our
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Table 1: Distributions of X variables used in the simulation studies. Z, E, D20, C5, and C10 are

mutually independent; Z is a standard normal variable; E is an exponential variable with mean one;

D20 is a uniformly distributed variable on the set {1, 2, ..., 20}; Cm denotes a m−category variable

taking values {1, 2, ...,m} with equal probabilities; U is a uniform variable over (0,1).

Independent Weakly Dependent Strongly Dependent

X1 Z Z + E +D20 E + 0.1Z

X2 E E E

X3 D20 D20 D20

X4 C5 �UC10/2� + 1 �UC10/2� + 1

X5 C10 C10 C10

proposed method is relatively unbiased in split selection and thus is more reliable in explaining the

resulting trees.

Selection methods

Dine et al. (2009) propose a tree-structured method for a mixture of continuous and categorical

outcomes, MTMO. The method considers splits of the form X ≤ C for some constant C, if X is an

ordered variable or X ∈ A for some subset A, if X is categorical variable. Their method adapt the

exhaustive search principle to choose the splitting variable. That is, it searches through all possible

covariates (X) and their split points (C) or sets (A). The split which partitions t into tL and tR
with the maximum i(t)− i(tL)− i(tR) value is the one actually channels data into two children nodes.

Function i(t) denotes node impurity which is defined using the likelihood function of the responses

at node t (Dine et al. 2009, p. 3797). Dine et al. (2009, p. 3798) show that some known impurity

functions are special cases of the proposed function.

On the other hand, for multivariate continuous or categorical response, it has been shown that

the methods which use the exhaustive search principle tend to select variables with more splits when

the response is independent of the covariates (Lee & Shih 2006, Hsiao & Shih 2007). In other words,

the methods have selection bias. In order to avoid this possible bias, we modify the algorithms of

Lee & Shih (2006) and Hsiao & Shih (2007) to accommodate mixed responses. It utilizes conditional

independence tests based on the hierarchical loglinear model for three way contingency tables for each

covariate and we denote our method, CIT.

Simulation studies

In all the experiments, five covariates including three ordered variables (X1, X2, and X3) and

two categorical variables (X4 and X5) are considered and their distributions are shown in Table 1.

For each method, the estimated probabilities of variable selection are recorded in 1,000 iterations with

500 random samples in each iteration. The response vector Y has two components Y1 and Y2 where

Y1 is a continuous random variable and Y2 is a categorical variable.

In the following simulation study, we assume the response vector Y = (Y1, Y2) is independent of

the X’s covariates. Furthermore, let Y2 be a binary random variable with Pr (Y2 = 0) = Pr (Y2 = 1).

Let Zµ be a normal random variable with mean μ and variance 1 and Zµ’s are independent. The

conditional distribution of Y1 given Y2 has the following distribution.
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(Distribution A)
Y1|(Y2 = 0) ∼ (1− ω1)Z0 + ω1Z1,

Y1|(Y2 = 1) ∼ ω1Z0 + (1− ω1)Z1,

where the value of ω1 is set so that the correlation coefficient between Y1 and Y2, ρ, is equal to −0.4, 0.0,

or 0.4, respectively. Estimated probabilities of selecting each covariate are recorded for the CIT and

the MTMO method. Since the covariates are independent of the response vector, each covariate shall

have 1/5 chance of being selected. A selection method which processes this property is called an

unbiased method.

Figure 1 shows bar graphs of the estimated selection probabilities for the two methods. We

find that the MTMO method tends to select variables with more split points. On the other hand,

the proposed method, CIT, selected each variable all within 3 standard error of 0.2. Thus, the CIT

method is relatively unbiased.

We then conduct the following simulation study where the response vector is related to some

covariates. An effective selection method shall be able to choose the correct variable(s) with higher

probabilities. We simulate various dependent structures according to the models given in Table 2.

The estimated probabilities of selecting the right covariate(s) are recorded for the CIT and MTMO

method. By changing the values of parameter β or b while holding the value of the other parameter

to be 0.05 , we obtain the power curves under various dependent models and the plots are shown in

Figure 2 to Figure 5.

In all these Figures, we observe that the CIT method almost always has higher probability of

selecting the correct variable(s) than the MTMO method. Thus, the CIT method is more powerful

than the MTMO method in choosing the correct variable(s) in these models.

Conclusion

We propose a new variable selection method for decision trees with mixed responses. The

method relies on the tests of conditional independence among three ways contingency tables. Through

simulations, we demonstrate that the method is relatively unbiased when the responses are independent

of the covariates. Furthermore, it has more power in selecting the correct variables when the responses

are related to some covariates.

Table 2: Models for power studies of the variable selection methods. Y1 is a continuous variable and

Y2 is a binary random variable. The models are generated by using the mean function plus a standard

normal error. The X’s follow the independent structure in Table 1. The generated variables are

I1 = I(X3 > 10); I2 = I(Y2 = 1); I3 = I(X4 ∈ {1, 2}); I4 = sgn(X3 − 10.5); and W = X1 + I1 +X1I1.

Model E(Y1) E(logit(Pr{Y2 = 1}))
I 0.5 + bI1 0.5 + βI1
II 0.5 + bI1 + 0.5I2 0.5 + βI1
III 0.5 + bI3 + 0.5I2 0.5 + βI4
IV 0.5 + bW + 0.5I2 0.5 + βI4
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Figure 1: Estimated probabilities of variable selection for the CIT and MTMO method for constant fit

where Y is independent of the X’s. The distribution of Y follows Distribution A. The distributions

of X’s are given in Table 1. The simulation standard errors is about 0.013.
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Figure 2: Estimated probability of X3 is selected for the CIT and the MTMO method under Model I

where one parameter (b or β) varies and the other is fixed at 0.05.
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Figure 3: Estimated probability of X3 is selected for the CIT and the MTMO method under Model

II where one parameter (b or β) varies and the other is fixed at 0.05 .
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Figure 4: Estimated probability of X3 or X4 is selected for the CIT and the MTMO method under

Model III where one parameter (b or β) varies and the other is fixed at 0.05.
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Figure 5: Estimated probability of X1 or X3 is selected for the CIT and the MTMO method under

Model IV where one parameter (b or β) varies and the other is fixed at 0.05.
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RÉSUMÉ (ABSTRACT)

We propose a variable selection method for constructing decision trees with a mixture of cat-

egorical and continuous responses. Compared with other selection methods, our method is relatively

unbiased and is more powerful in selecting the correct split variables. Moreover, Our method is com-

putational efficient. Simulation results are given to demonstrate the strength of our method.
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